# Fast Numerical Program Analysis with Reinforcement Learning



Gagandeep Singh



Markus Püschel



Martin Vechev

Department of Computer Science ETH Zürich

### ML-Based Solvers

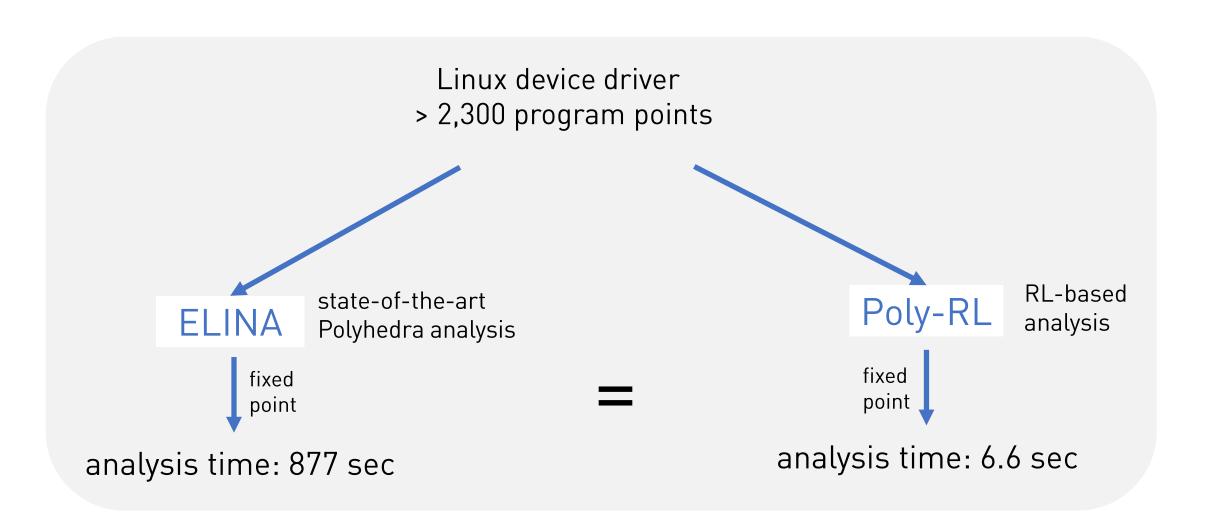
Many solvers and analyzers are based on heuristics

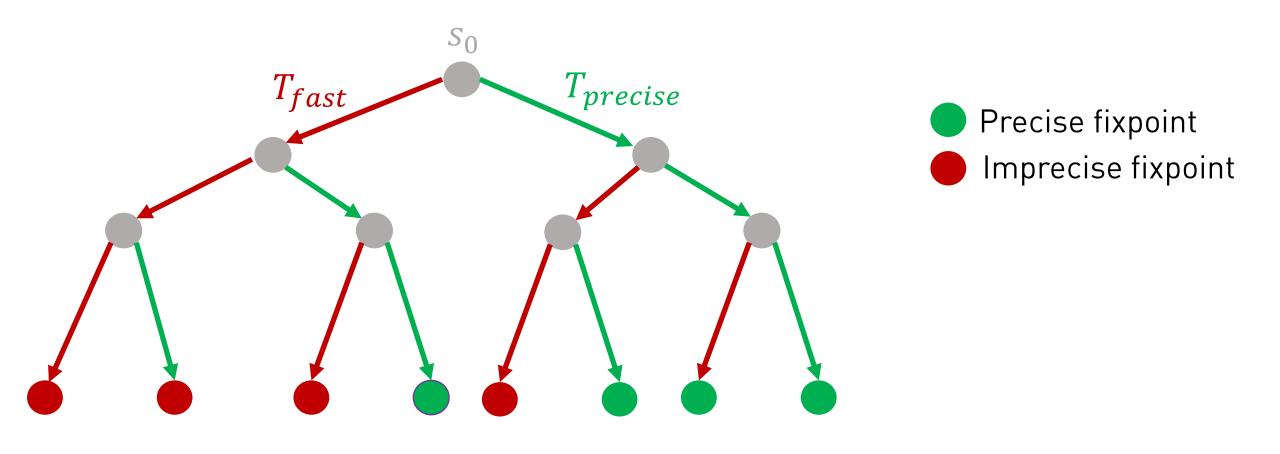
Trade-off precision vs. scalability

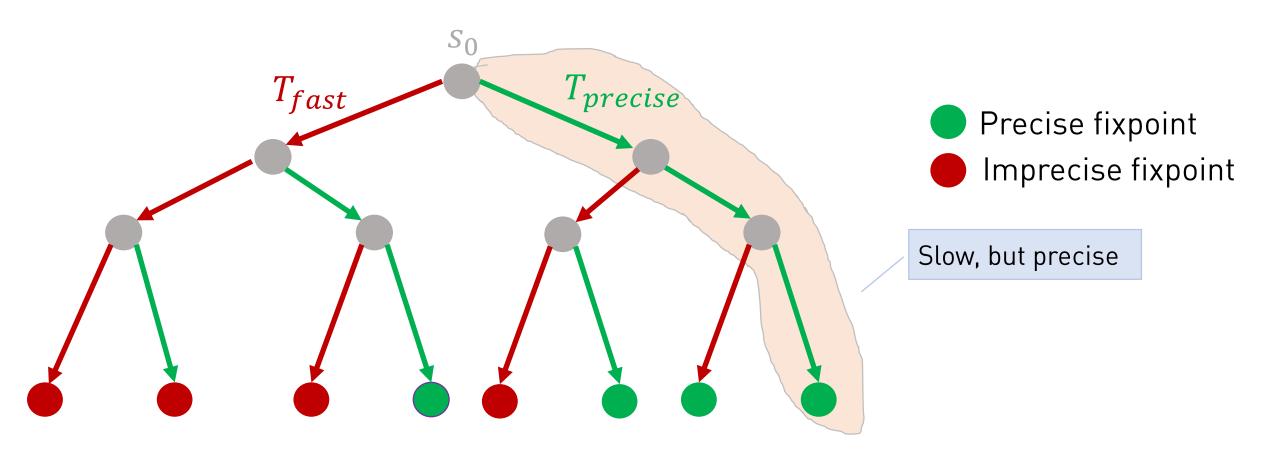
Key idea: apply machine learning to learn optimal strategy

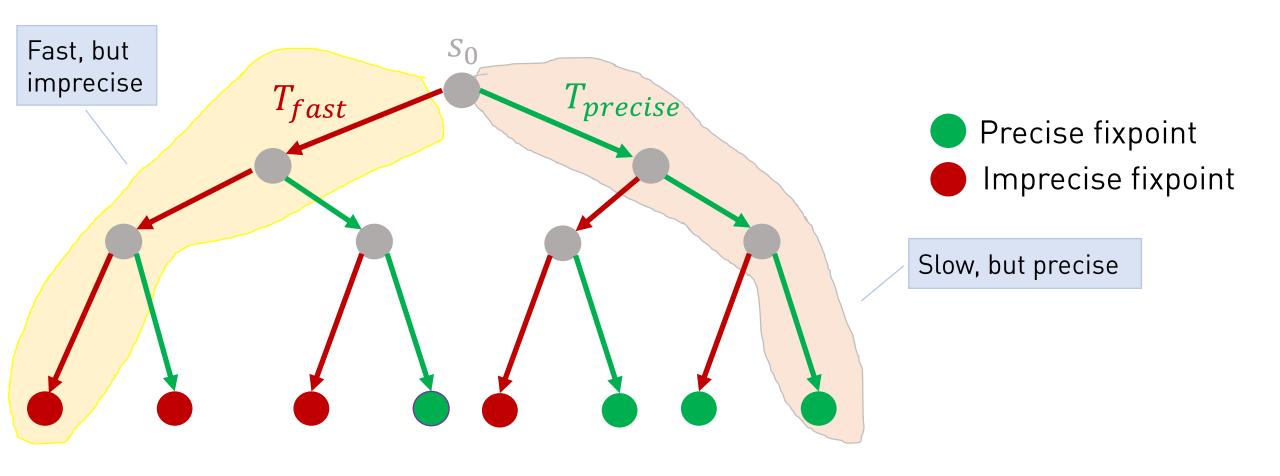
This work: ML for numerical static analysis

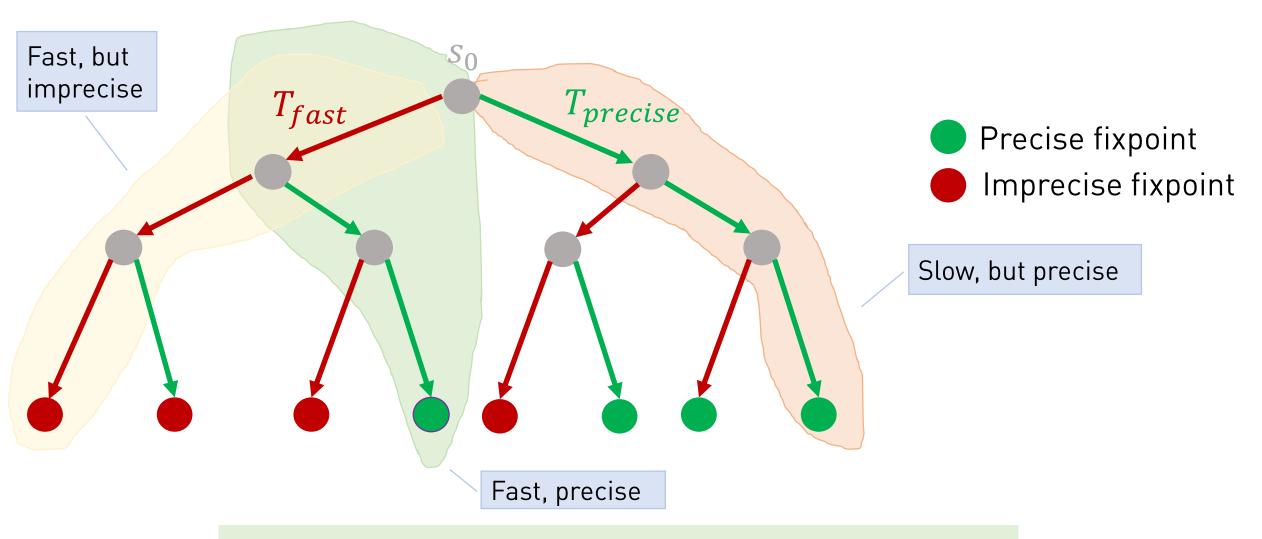
## Reinforcement learning for analysis





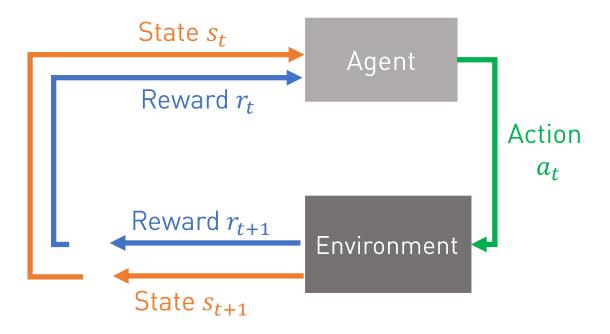






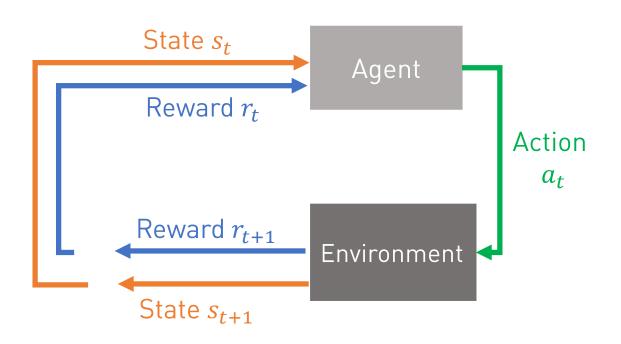
Goal: find such a sequence of transformers

### Reinforcement learning

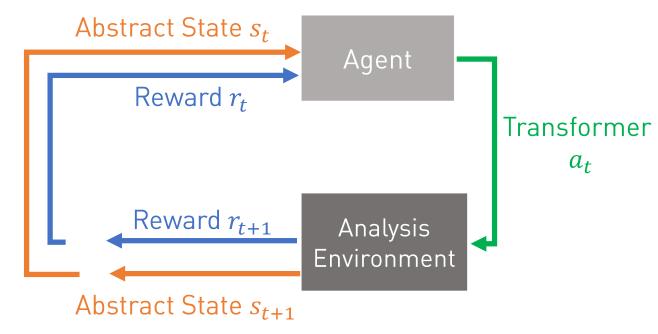


Learn a policy that for any state selects the action maximizing long term rewards

## Reinforcement learning for analysis



Learn a policy that for any state selects the action maximizing long term rewards



Learn a policy that for any abstract state selects the transformer maximizing speed and precision of analysis

## What is the agent doing?

Agents maintains a function  $Q: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ 

higher Q is proxy for higher precision and performance at fixpoint

$$Q(s,a) = \sum_{j=1}^{l} \theta_j \, \phi_j(s,a)$$

linear function approximation, can also use deep learning to represent Q

 $\phi_j$  are features on (state, action) pairs  $\theta_j$  are parameters to be learned via Q-learning, learning uses reward function  $r(s_t, a_t, s_{t+1})$ 

$$a_t = argmax_{a \in \mathcal{A}}Q(s_t, a)$$

## Step 1: Define space of transformers A

### Input state s

$$\{x_1 - x_2 + x_3 \le 0, x_2 + x_3 + x_4 \le 0, x_2 - x_3 \le 0, x_3 + x_4 \le 0, x_4 - x_5 \le 0, x_4 - x_6 \le 0\}$$

# Optimal Transformer $x_5 := x_4 - x_6$

$$\{x_1 - x_2 + x_3 \le 0, x_2 + x_3 + x_4 \le 0, x_2 - x_3 \le 0, x_3 + x_4 \le 0, x_4 - x_5 - x_6 = 0, x_4 - x_6 \le 0\}$$

### Approximate Transformer I

Remove constraints 
$$\{x_2+x_3+x_4 \leq 0, x_3+x_4 \leq 0\}$$

$$\{x_1 - x_2 + x_3 \le 0, x_2 - x_3 \le 0\}$$

$$\{x_4 - x_5 \le 0, x_4 - x_6 \le 0\}$$

$$\begin{cases} x_1 - x_2 + x_3 \le 0, \\ x_5 := x_4 - x_6 \end{cases}$$

$$\{x_4 - x_5 - x_6 = 0, x_4 - x_6 \le 0\}$$

### Approximate Transformer II

$$\begin{cases} R_{em_{ove}} & constraints \\ x_4 - x_5 \leq 0, \\ x_6 \leq 0 \end{cases}$$

$$\{x_1 - x_2 + x_3 \le 0, x_2 + x_3 + x_4 \le 0, x_2 - x_3 \le 0, x_3 + x_4 \le 0 \}$$

$$x_5 := x_4 - x_6$$

$$x$$

$$x$$

$$\{x_1 - x_2 + x_3 \le 0, x_2 + x_3 + x_4 \le 0, x_2 - x_3 \le 0, x_3 + x_4 \le 0, x_4 - x_5 - x_6 = 0\}$$

## Step 2: Define features $\phi_i(s, a)$

Feature are proxy for **precision** of input s and **performance** of transformer a

### State s

$$\{x_1 - x_2 + x_3 \le 0, x_2 - x_3 \le 0\}$$

$$\{x_4 - x_5 \le 0, x_4 - x_6 \le 0\}$$

$$\{x_7 = 0, x_8 + x_7 \le 0\}$$

| Precision features                                     | Value         |
|--------------------------------------------------------|---------------|
| # of variables with finite upper and lower bound       | $1(x_7)$      |
| # of variables with either finite upper or lower bound | $2(x_1, x_8)$ |

| Performance features              | Value |  |
|-----------------------------------|-------|--|
| # of blocks                       | 3     |  |
| Maximum # of variables in a block | 3     |  |
| Minimum # of variables in a block | 2     |  |
| Average # of variables in a block | 8/3   |  |

## Step 3: Define reward function $r(s_t, a_t, s_{t+1})$

Reward favors high precision of output state  $s_{t+1}$  and speed for transformer  $a_t$ 

### Output state $s_{t+1}$

$$\begin{cases}
 x_1 - x_2 + x_3 \le 0, \\
 x_2 - x_3 \le 0
 \end{cases}$$

$$\{x_4 - x_5 - x_6 = 0, x_5 = 0, x_6 \le 2, -x_6 \le 0\}$$

 $n_s$ : # of variables with singleton bounds

 $n_b$ : # of variables with finite lower and upper bound

 $oldsymbol{n_{hb}}$ : # of variables with only finite lower or upper bound

cyc: # of cycles for computing the transformer

$$r(s_t, a_t, s_{t+1}) = 3.n_s + 2.n_b + n_{hb} - log_{10}(cyc)$$

| Feature                | Value on            |  |  |
|------------------------|---------------------|--|--|
|                        | $s_{t+1}$           |  |  |
| $n_{s}$                | 1 (x <sub>5</sub> ) |  |  |
| $n_b$                  | $2(x_4, x_6)$       |  |  |
| $n_{hb}$               | $1(x_1)$            |  |  |
| сус                    | 10                  |  |  |
| $r(s_t, a_t, s_{t+1})$ | 7                   |  |  |

## Putting it all together

Finally, using the features  $\phi_j$ , the reward function  $r(s_t, a_t, s_{t+1})$ , and transformers  $\mathcal{A}$ , we can apply Q-learning and learn  $\theta_j$ 

Then, we can perform **RL-based analysis** 

$$Q(s,a) = \sum_{j=1}^{l} \theta_j \, \phi_j(s,a)$$

$$a_t = argmax_{a \in \mathcal{A}} Q(s_t, a)$$

## Experimental setup

### Dataset from SVCOMP

70 benchmarks for training, 30 benchmarks for testing

### Poly-RL vs

- ELINA: state-of-the-art Polyhedra library [ground truth]
- Poly-Fixed: fixed strategy
- Poly-Init: use precise transformer 50% of the time

Precision = % of program points with same invariants as ELINA

## Experimental results

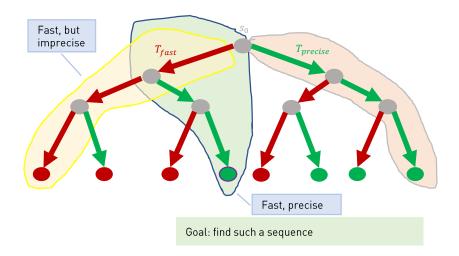
Timeout: 1hr, Memory limit: 100 GB

| Benchmark      | Number of program points | ELINA    | Poly-RL |           | Poly-Fixed |           | Poly-Init |           |
|----------------|--------------------------|----------|---------|-----------|------------|-----------|-----------|-----------|
|                |                          | time (s) | time(s) | precision | time(s)    | precision | time(s)   | precision |
| wireless_airo  | 2372                     | 877      | 6.6     | 100       | 6.7        | 100       | 5.2       | 74        |
| net_ppp        | 689                      | 2220     | 9.1     | 87        | TO         | 34        | 7.7       | 55        |
| mfd_sm501      | 369                      | 1596     | 3.1     | 97        | 1421       | 97        | 2         | 64        |
| ideapad_laptop | 461                      | 172      | 2.9     | 100       | 157        | 100       | 00M       | 41        |
| pata_legacy    | 262                      | 41       | 2.8     | 41        | 2.5        | 41        | 00M       | 27        |
| usb_ohci       | 1520                     | 22       | 2.9     | 100       | 34         | 100       | 00M       | 50        |
| usb_gadget     | 1843                     | 66       | 37      | 60        | 35         | 60        | TO        | 40        |
| wireless_b43   | 3226                     | 19       | 13      | 66        | TO         | 28        | 83        | 34        |
| lustre_llite   | 211                      | 5.7      | 4.9     | 98        | 5.4        | 98        | 6.1       | 54        |
| usb_cx231xx    | 4752                     | 7.3      | 3.9     | ≈100      | 3.7        | ≈100      | 3.9       | 94        |
| netfilter_ipvs | 5238                     | 20       | 17      | ≈100      | 9.8        | ≈100      | 11        | 94        |

Poly-RL produces the same invariant at assertion points as ELINA on all benchmarks

## Summary

### Many analyzers/solvers based on heuristics



### Instantiate for Polyhedra via Q-learning

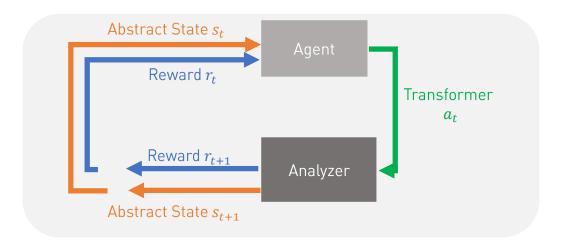
Step 1: Define space of transformers  ${\mathcal A}$ 

Step 2: Define features  $\phi_i(s, a)$ 

Step 3: Define reward function  $r(s_t, a_t, s_{t+1})$ 

$$Q(s,a) = \sum_{j=1}^{l} \theta_j \, \phi_j(s,a) \quad a_t = argmax_{a \in \mathcal{A}} Q(s_t,a)$$

#### **Use Reinforcement Learning to find heuristics**



### Promising results and future work

