Fast Numerical Program Analysis with Reinforcement Learning

Gagandeep Singh

Markus Püschel

Martin Vechev

Department of Computer Science ETH Zürich

ML-Based Solvers

Many solvers and analyzers are based on heuristics

Trade-off precision vs. scalability

Key idea: apply machine learning to learn optimal strategy

This work: ML for numerical static analysis

Reinforcement learning for analysis

Goal: find such a sequence of transformers

Reinforcement learning

Learn a policy that for any state selects the action maximizing long term rewards

Reinforcement learning for analysis

Learn a policy that for any state selects the action maximizing long term rewards

Learn a policy that for any abstract state selects the transformer maximizing speed and precision of analysis

What is the agent doing?

Agents maintains a function $Q: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$

higher Q is proxy for higher precision and performance at fixpoint

$$Q(s,a) = \sum_{j=1}^{l} \theta_j \, \phi_j(s,a)$$

linear function approximation, can also use deep learning to represent Q

 ϕ_j are features on (state, action) pairs θ_j are parameters to be learned via Q-learning, learning uses reward function $r(s_t, a_t, s_{t+1})$

$$a_t = argmax_{a \in \mathcal{A}}Q(s_t, a)$$

Step 1: Define space of transformers A

Input state s

$$\{x_1 - x_2 + x_3 \le 0, x_2 + x_3 + x_4 \le 0, x_2 - x_3 \le 0, x_3 + x_4 \le 0, x_4 - x_5 \le 0, x_4 - x_6 \le 0\}$$

Optimal Transformer $x_5 := x_4 - x_6$

$$\{x_1 - x_2 + x_3 \le 0, x_2 + x_3 + x_4 \le 0, x_2 - x_3 \le 0, x_3 + x_4 \le 0, x_4 - x_5 - x_6 = 0, x_4 - x_6 \le 0\}$$

Approximate Transformer I

Remove constraints
$$\{x_2+x_3+x_4 \leq 0, x_3+x_4 \leq 0\}$$

$$\{x_1 - x_2 + x_3 \le 0, x_2 - x_3 \le 0\}$$

$$\{x_4 - x_5 \le 0, x_4 - x_6 \le 0\}$$

$$\begin{cases} x_1 - x_2 + x_3 \le 0, \\ x_5 := x_4 - x_6 \end{cases}$$

$$\{x_4 - x_5 - x_6 = 0, x_4 - x_6 \le 0\}$$

Approximate Transformer II

$$\begin{cases} R_{em_{ove}} & constraints \\ x_4 - x_5 \leq 0, \\ x_6 \leq 0 \end{cases}$$

$$\{x_1 - x_2 + x_3 \le 0, x_2 + x_3 + x_4 \le 0, x_2 - x_3 \le 0, x_3 + x_4 \le 0 \}$$

$$x_5 := x_4 - x_6$$

$$x$$

$$x$$

$$\{x_1 - x_2 + x_3 \le 0, x_2 + x_3 + x_4 \le 0, x_2 - x_3 \le 0, x_3 + x_4 \le 0, x_4 - x_5 - x_6 = 0\}$$

Step 2: Define features $\phi_i(s, a)$

Feature are proxy for **precision** of input s and **performance** of transformer a

State s

$$\{x_1 - x_2 + x_3 \le 0, x_2 - x_3 \le 0\}$$

$$\{x_4 - x_5 \le 0, x_4 - x_6 \le 0\}$$

$$\{x_7 = 0, x_8 + x_7 \le 0\}$$

Precision features	Value
# of variables with finite upper and lower bound	$1(x_7)$
# of variables with either finite upper or lower bound	$2(x_1, x_8)$

Performance features	Value	
# of blocks	3	
Maximum # of variables in a block	3	
Minimum # of variables in a block	2	
Average # of variables in a block	8/3	

Step 3: Define reward function $r(s_t, a_t, s_{t+1})$

Reward favors high precision of output state s_{t+1} and speed for transformer a_t

Output state s_{t+1}

$$\begin{cases}
 x_1 - x_2 + x_3 \le 0, \\
 x_2 - x_3 \le 0
 \end{cases}$$

$$\{x_4 - x_5 - x_6 = 0, x_5 = 0, x_6 \le 2, -x_6 \le 0\}$$

 n_s : # of variables with singleton bounds

 n_b : # of variables with finite lower and upper bound

 $oldsymbol{n_{hb}}$: # of variables with only finite lower or upper bound

cyc: # of cycles for computing the transformer

$$r(s_t, a_t, s_{t+1}) = 3.n_s + 2.n_b + n_{hb} - log_{10}(cyc)$$

Feature	Value on		
	s_{t+1}		
n_{s}	1 (x ₅)		
n_b	$2(x_4, x_6)$		
n_{hb}	$1(x_1)$		
сус	10		
$r(s_t, a_t, s_{t+1})$	7		

Putting it all together

Finally, using the features ϕ_j , the reward function $r(s_t, a_t, s_{t+1})$, and transformers \mathcal{A} , we can apply Q-learning and learn θ_j

Then, we can perform **RL-based analysis**

$$Q(s,a) = \sum_{j=1}^{l} \theta_j \, \phi_j(s,a)$$

$$a_t = argmax_{a \in \mathcal{A}} Q(s_t, a)$$

Experimental setup

Dataset from SVCOMP

70 benchmarks for training, 30 benchmarks for testing

Poly-RL vs

- ELINA: state-of-the-art Polyhedra library [ground truth]
- Poly-Fixed: fixed strategy
- Poly-Init: use precise transformer 50% of the time

Precision = % of program points with same invariants as ELINA

Experimental results

Timeout: 1hr, Memory limit: 100 GB

Benchmark	Number of program points	ELINA	Poly-RL		Poly-Fixed		Poly-Init	
		time (s)	time(s)	precision	time(s)	precision	time(s)	precision
wireless_airo	2372	877	6.6	100	6.7	100	5.2	74
net_ppp	689	2220	9.1	87	TO	34	7.7	55
mfd_sm501	369	1596	3.1	97	1421	97	2	64
ideapad_laptop	461	172	2.9	100	157	100	00M	41
pata_legacy	262	41	2.8	41	2.5	41	00M	27
usb_ohci	1520	22	2.9	100	34	100	00M	50
usb_gadget	1843	66	37	60	35	60	TO	40
wireless_b43	3226	19	13	66	TO	28	83	34
lustre_llite	211	5.7	4.9	98	5.4	98	6.1	54
usb_cx231xx	4752	7.3	3.9	≈100	3.7	≈100	3.9	94
netfilter_ipvs	5238	20	17	≈100	9.8	≈100	11	94

Poly-RL produces the same invariant at assertion points as ELINA on all benchmarks

Summary

Many analyzers/solvers based on heuristics

Instantiate for Polyhedra via Q-learning

Step 1: Define space of transformers ${\mathcal A}$

Step 2: Define features $\phi_i(s, a)$

Step 3: Define reward function $r(s_t, a_t, s_{t+1})$

$$Q(s,a) = \sum_{j=1}^{l} \theta_j \, \phi_j(s,a) \quad a_t = argmax_{a \in \mathcal{A}} Q(s_t,a)$$

Use Reinforcement Learning to find heuristics

Promising results and future work

