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ML-Based Solvers

Many solvers and analyzers are based on heuristics
Trade-off precision vs. scalability
Key idea: apply machine learning to learn optimal strategy

This work: ML for numerical static analysis



Reinforcement learning for analysis

Linux device driver
> 2,300 program points
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ELINA state-of-the-art POI.y'RI_ analysis

Polyhedra analysis
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analysis time: 877 sec analysis time: 6.6 sec



Static analysis: trade-offs
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Static analysis: trade-offs
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Fast, precise

Goal: find such a sequence of transformers



Reinforcement learning

State s;

Reward r;

Reward 7344 :

—
State 5441

Learn a policy that for any state
selects the action maximizing
long term rewards



Reinforcement learning for analysis

Abstract State s;
Agent
Reward r;

State s;

Reward r;

Action Transformer
a; a¢
Reward 7344 Reward 7y, 4 Analysis
D] ENVironment — :
Environment
—_— —_—
State 5441 Abstract State sy
Learn a policy that for any state Learn a policy that for any abstract state
selects the action maximizing selects the transformer maximizing

long term rewards speed and precision of analysis



What is the agent doing?

: : : _ higher Q is proxy for higher precision
Agents maintains a function Q@ : § X A » R and performance at fixpoint

l
Q(S, a) = z Qj ¢j (s,a) linear function approximation,
=1 can also use deep learning to represent Q

¢; are features on [state, action] pairs
6; are parameters to be learned via Q-learning,

learning uses reward function 7(s;, a;, S;41)

a; = argmaxgeqQ (S, a)



Step 1: Define space of transformers A

Input state s

{x; —x, +x3 <0,
Xy +x3 +x4 <0,
X, —x3 <0,
x3 +x4 <0,
X4—X5SO,
X4 — Xg < 0}

Optimal
Transformer
x5: = x4 — x6

v

{x; —x, +x3 <0,
Xy +x3 +x4 <0,
X, —x3 <0,
X3+ x4 <0,
X4 — X5 —Xg = 0,
X4 — X < 0}

Approximate Transformer |

Remove constraints
{x2+X3 S X4 < O,

X3 +X4 < O}

v

{xl—x2+x3SO,
xZ—x3SO}

{X4—X5SO,
X4—X6SO}

{x; —x, +x3 <0,
Xy, +x3 +x4 <0,
X, —x3 <0,
X3+ x4 <0}

x5:=X4_x6

v

Approximate Transformer ||

X5:=x4 _x6

v

{xl—x2+X3SO,
xz—X3SO}

{x, — x5 — x5, =0,
Xy — Xg < 0}

{x; —x, + x3 <0,
X, +x3+x4 <0,
X, —x3 <0,
x3 +x4 <0,
X4 — X5 — Xg = 0}



Step 2: Define features ¢;(s, a)

Feature are proxy for precision of input s and performance of transformer a

State s
s =2 + x5 < 0
Xy, —x3 < 0} # of variables with finite upper 1 (x,) # of blocks
and lower bound Maximum # of variables in a block 3
{x4~ x5 — O’ # of variables with either finite 2 [xl, X8] Minimum # of variables in a block 2
X4 — X < 0} upper or lower bound . .

Average # of variables in a block 8/3

{X7 — 0'

x8+X7SO}



Step 3: L

Reward favors high precision of output state

Output state

{x; —x, +x3 <0,
XZ—X3S0}

{x, — x5 — x5 =0,

Xg = 0,
Xe < 2,—X6 < 0}

ng: # of variables with singleton bounds
n,: # of variables with finite lower and upper bound
nyy: # of variables with only finite lower or upper bound

cyc: # of cycles for computing the transformer

r(S¢, 0, 5¢41) = 3.ng+ 2.np + Ny — log1o(cyc)

Feature

nS
ny
Npup
cyc

r(Se, Aty St+1)

efine reward function r(s;, a;, s;+ )

and speed for transformer a;

Value on

T (xs)

2 (x4, x6)
T ()

10

7



Putting it all together

Finally, using the features ¢, the reward function r(s;, a;, S;41),
and transformers A, we can apply Q-learning and learn 6,

Then, we can perform RL-based analysis
l
0(s,@) = ) 6 ¢,(s,)
j=1

ar = argmaxge,Q (S, a)



Experimental setup

Dataset from SVCOMP

70 benchmarks for training, 30 benchmarks for testing

Poly-RL vs
« ELINA: state-of-the-art Polyhedra library [ground truth]
* Poly-Fixed: fixed strategy
* Poly-Init: use precise transformer 50% of the time

Precision = % of program points with same invariants as ELINA



Experimental results

Timeout: Thr, Memory limit: 100 GB

Benchmark Number of ELINA Poly-RL Poly-Fixed Poly-Init
program points

time (s]  time(s) precision time(s) precision time(s) precision
wireless_airo 2372 877 6.6 100 6.7 100 5.2 74
net_ppp 689 2220 9.1 87 T0 34 7.7 55
mfd_sm301 369 1596 3.1 97 1421 97 2 64
Ideapad_laptop 461 172 2.9 100 157 100 OOM 41
pata_legacy 262 41 2.8 41 2.9 41 OOM 27
usb_ohci 1520 22 2.9 100 34 100 OOM 50
usb_gadget 1843 66 37 60 39 60 T0 40
wireless_b43 3226 19 13 66 T0 28 83 34
lustre_llite 211 5.7 4.9 98 5.4 98 6.1 o4
usb_cx231xx 4752 7.3 3.9 ~100 3.7 ~100 3.9 94
netfilter_ipvs 5238 20 17 ~100 9.8 ~100 11 94

Poly-RL produces the same invariant at assertion points as ELINA on all benchmarks



Summary

Many analyzers/solvers based on heuristics

Fast, but ///\\
imprecise
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Fast, precise

Goal: find such a sequence

Instantiate for Polyhedra via Q-learning

Step 1: Define space of transformers A

Step 2: Define features ¢;(s, a)
Step 3: Define reward function r(s;, a;, s¢41)

l
Q@)=Y 6,¢,(5,@) @ = argmaxaeaQ(se,a)
j=1

Use Reinforcement Learning to find heuristics

Abstract State s;

Reward r;

Reward r,
_t-l-l Analyzer
_

Abstract State s;44

Transformer
ag

Promising results and future work

Linux device driver
> 2,300 program points

O

ELINA Poly-RL
analysis time: analysis time:
877 sec 6.6 sec



