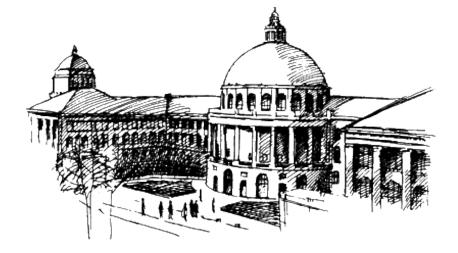
Fast Polyhedra Abstract Domain

Gagandeep Singh Markus Püschel Martin Vechev

Department of Computer Science ETH Zurich



Automatic Discovery of Linear Restraints Among Variables of a Program, POPL'78

Automatic Discovery of Linear Restraints Among Variables of a Program, POPL'78

Introduced by Patrick Cousot and Nicolas Halbwachs

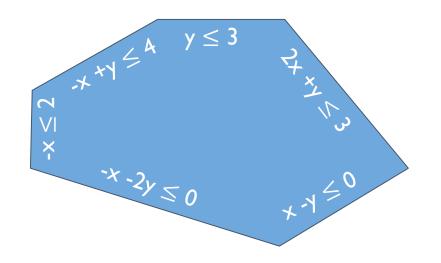
Represents linear constraints between program variables

Patrick Cousot Nicolas Halbwachs

Automatic Discovery of Linear Restraints Among Variables of a Program, POPL'78

Introduced by Patrick Cousot and Nicolas Halbwachs

Represents linear constraints between program variables



Patrick Cousot Nicolas Halbwachs

if(*){
 y:=2x-1;
}
else{
 y:=2x-2;
}
assert(y<=2x);</pre>

if(*){
 y:=2x-1;
}
else{
 y:=2x-2;
}
assert(y<=2x);</pre>

Abstract Domain	Can Prove the Assertion?
Interval	×
Pentagon	×
Zones	×
Octagon	×
Polyhedra	

if(*){ y:=2x-1;	Abstract Domain	Can Prove the Assertion?
}	Interval	×
else{	Pentagon	×
y:=2x-2;	Zones	×
}	Octagon	×
<pre>assert(y<=2x);</pre>	Polyhedra	

Polyhedra analysis: time and space exponential in number of variables

Online decomposition:

reduction in space and time without losing precision

Online decomposition:

reduction in space and time without losing precision

Constant factor improvements via reduced operation count and cache optimizations

Online decomposition:

reduction in space and time without losing precision

Constant factor improvements via reduced operation count and cache optimizations

EL/NA elina.ethz.ch

Complete end-to-end implementation

Online decomposition:

reduction in space and time without losing precision

EL/NA elina.ethz.ch

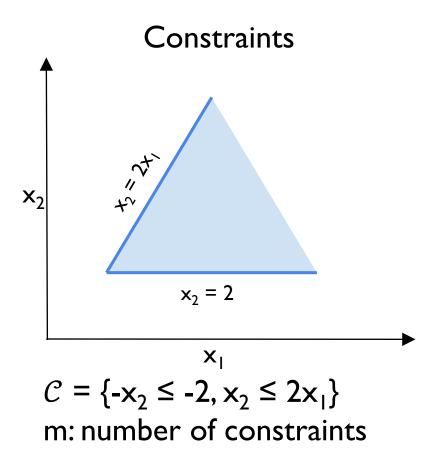
Complete end-to-end implementation

Constant factor improvements via reduced operation count and cache optimizations

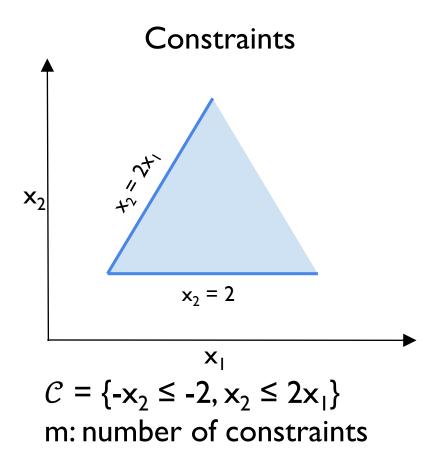
Driver	NewPolka	PPL	ELINA
500 var39K LOC	<mark>OOM</mark>	OOM	4 sec
	(> 12 GB)	(> 12 GB)	0.9 GB
650 var25K LOC	TO	TO	2 sec
	(> 4 hr)	(> 4 hr)	0.4 GB

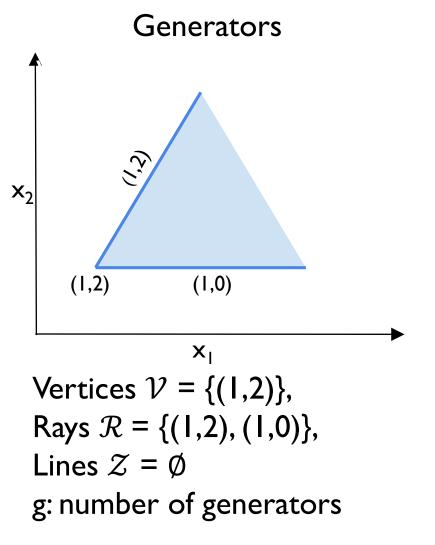
Double Representation of Polyhedron

Double Representation of Polyhedron



Double Representation of Polyhedron





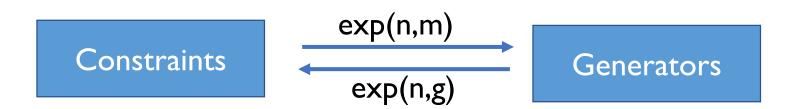
Asymptotic Time Complexity of Polyhedra

Asymptotic Time Complexity of Polyhedra

Operator	Constraints	Generators	Both
Join (⊔)	exp(n,m)	0(<i>ng</i>)	0(<i>ng</i>)
Meet (⊓)	0(<i>nm</i>)	exp(n,g)	0(<i>nm</i>)
Inclusion (⊑)	exp(n,m)	exp(n,g)	0(<i>ngm</i>)
Assignment	$0(nm^2)$	0(<i>ng</i>)	0(<i>ng</i>)
Conditional	0(<i>n</i>)	exp(n,g)	0(<i>n</i>)

Asymptotic Time Complexity of Polyhedra

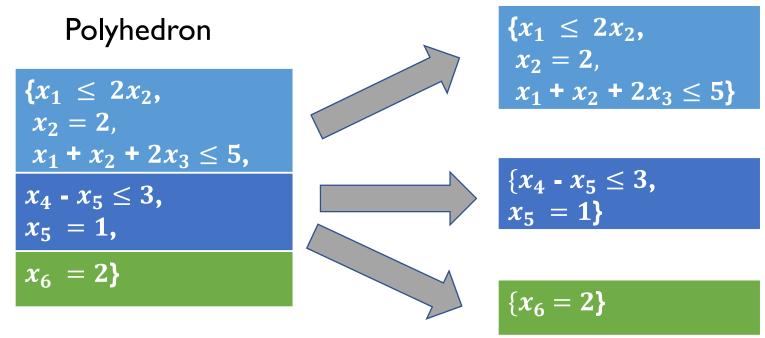
Operator	Constraints	Generators	Both
Join (⊔)	exp(n,m)	0(<i>ng</i>)	0(<i>ng</i>)
Meet (⊓)	0(<i>nm</i>)	exp(n,g)	0(<i>nm</i>)
Inclusion (⊑)	exp(n,m)	exp(n,g)	0(<i>ngm</i>)
Assignment	$0(nm^2)$	0(<i>ng</i>)	0(<i>ng</i>)
Conditional	0(<i>n</i>)	exp(n,g)	0(<i>n</i>)

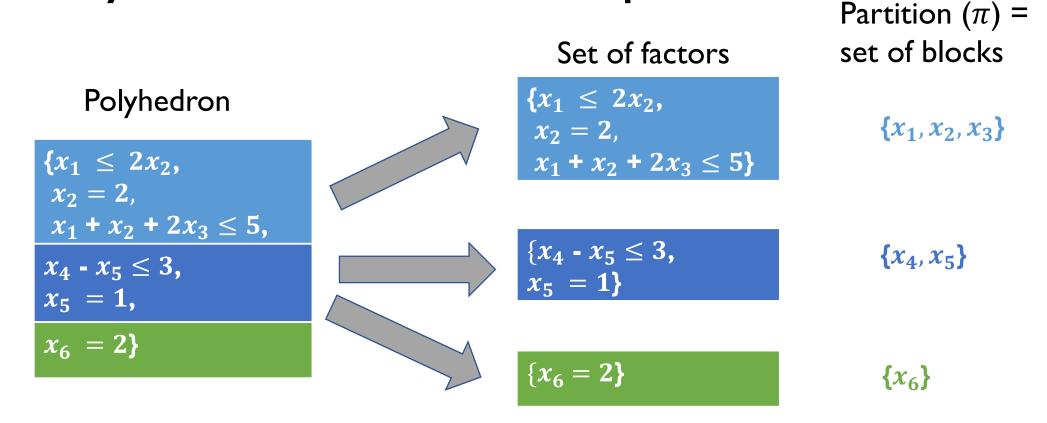


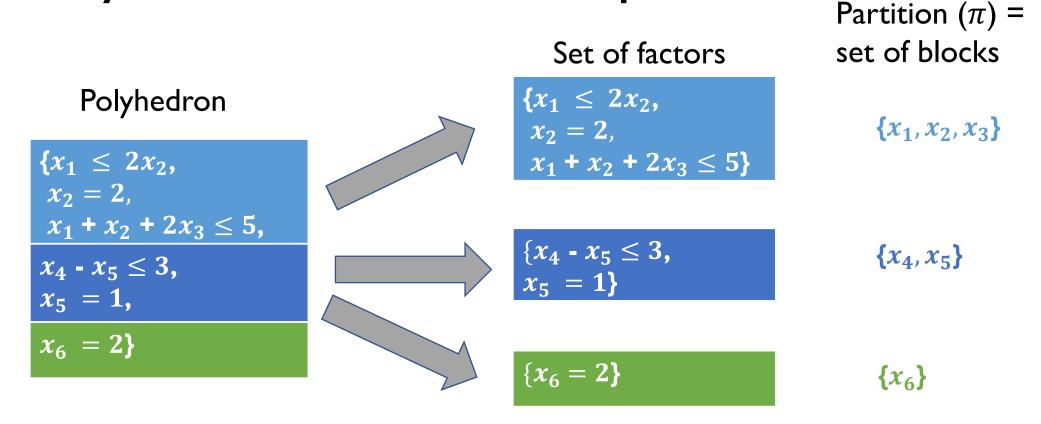
Polyhedron

 $\{ x_1 \leq 2x_2, \\ x_2 = 2, \\ x_1 + x_2 + 2x_3 \leq 5, \\ x_4 - x_5 \leq 3, \\ x_5 = 1, \\ x_6 = 2 \}$

Set of factors







working on smaller Polyhedra enables reduction in space and time

Polyhedron

$$\{ x_1 \leq 2x_2, \\ x_2 = 2, \\ x_1 + x_2 + 2x_3 \leq 5, \\ x_4 - x_5 \leq 3, \\ x_5 = 1, \\ x_6 = 2 \}$$

Polyhedron	Best (finest) partition (π)
$ \begin{cases} x_1 \leq 2x_2, \\ x_2 = 2, \\ x_1 + x_2 + 2x_3 \leq 5, \end{cases} $	$\{x_1, x_2, x_3\}$
$x_4 - x_5 \le 3, x_5 = 1,$	$\{x_4, x_5\}$
$x_6 = 2$	{ <i>x</i> ₆ }

Polyhedron	Best (finest) partition (π)	Permissible partition $(\overline{\pi})$
$ \begin{cases} x_1 \leq 2x_2, \\ x_2 = 2, \\ x_1 + x_2 + 2x_3 \leq 5, \end{cases} $	$\{x_1, x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$x_4 - x_5 \le 3, \ x_5 = 1,$	{ <i>x</i> ₄ , <i>x</i> ₅ }	$\{x_4, x_5, x_6\}$
$x_6 = 2$	{ <i>x</i> ₆ }	

Polyhedron	Best (finest) partition (π)	Permissible partition $(\overline{\pi})$	Invalid partition
$ \{ \begin{aligned} &x_1 \leq 2x_2, \\ &x_2 = 2, \\ &x_1 + x_2 + 2x_3 \leq 5, \end{aligned} $	$\{x_1, x_2, x_3\}$	$\{x_1, x_2, x_3\}$	${x_1, x_2}$
$x_4 - x_5 \le 3,$ $x_5 = 1,$	$\{x_4, x_5\}$	$\{x_4, x_5, x_6\}$	$\{x_3, x_4, x_5\}$
$x_6 = 2$	{ <i>x</i> ₆ }		{ <i>x</i> ₆ }

Polyhedron	Best (finest) partition (π)	Permissible partition $(\overline{\pi})$	Invalid partition
$ \begin{cases} x_1 \leq 2x_2, \\ x_2 = 2, \\ x_1 + x_2 + 2x_3 \leq 5, \end{cases} $	$\{x_1, x_2, x_3\}$	$\{x_1, x_2, x_3\}$	$\{x_1, x_2\}$
$x_1 + x_2 + 2x_3 \le 3,$ $x_4 - x_5 \le 3,$ $x_5 = 1,$	$\{x_4, x_5\}$	$\{x_4, x_5, x_6\}$	$\{x_3, x_4, x_5\}$
$x_6 = 2$	{ <i>x</i> ₆ }		{ <i>x</i> ₆ }

Definition: A partition π is permissible for Polyhedron P, if there are no two variables x_i and x_j in different blocks of π related by a constraint in P

Partition of Variable Set: Summary

Partition of Variable Set: Summary

The set of all partitions of variable set \mathcal{X} form a lattice ordered by "finer than" (<) relation

The **best (finest)** partition π_P for Polyhedron P is unique

Any $\overline{\pi}$, s.t., $\pi_P < \overline{\pi}$, is permissible

An unconstrained variable x_i yields a singleton set $\{x_i\}$ in the partition

Partition of Variable Set: Summary

The set of all partitions of variable set \mathcal{X} form a lattice ordered by "finer than" (<) relation

The **best (finest)** partition π_P for Polyhedron P is unique

Any $\overline{\pi}$, s.t., $\pi_P < \overline{\pi}$, is permissible

An unconstrained variable x_i yields a singleton set $\{x_i\}$ in the partition

Challenge: maintain permissible partitions for > 30 operators

Operator: Conditional

Operator: Conditional

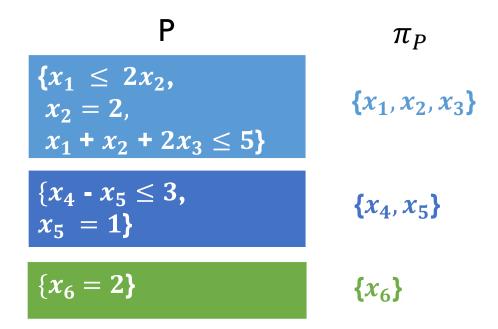
Definition: Let π be a partition and \mathcal{B} be a block, then $\pi \uparrow \mathcal{B}$ is the finest partition π ' such that $\pi \sqsubseteq \pi$ ' and \mathcal{B} is a subset of an element of π '

Theorem (finest partition after conditional):

If $O \neq \perp$ and let \mathcal{B} be block containing all variables appearing in the conditional, then $\pi_0 = \pi_P \uparrow \mathcal{B}$

Operator: Conditional

Definition: Let π be a partition and \mathcal{B} be a block, then $\pi \uparrow \mathcal{B}$ is the finest partition π ' such that $\pi \sqsubseteq \pi$ ' and \mathcal{B} is a subset of an element of π '

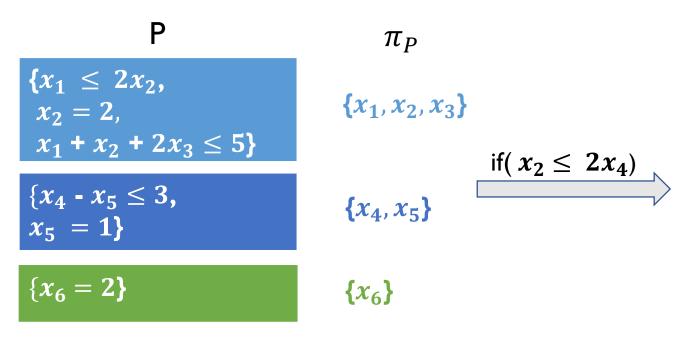


Theorem (finest partition after conditional):

If $O \neq \perp$ and let \mathcal{B} be block containing all variables appearing in the conditional, then $\pi_0 = \pi_P \uparrow \mathcal{B}$

Operator: Conditional

Definition: Let π be a partition and \mathcal{B} be a block, then $\pi \uparrow \mathcal{B}$ is the finest partition π ' such that $\pi \sqsubseteq \pi$ ' and \mathcal{B} is a subset of an element of π '

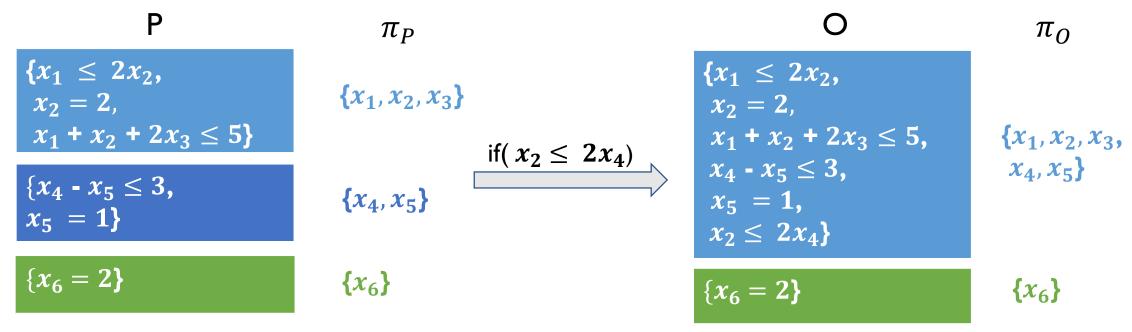


Theorem (finest partition after conditional):

If $O \neq \perp$ and let \mathcal{B} be block containing all variables appearing in the conditional, then $\pi_0 = \pi_P \uparrow \mathcal{B}$

Operator: Conditional

Definition: Let π be a partition and \mathcal{B} be a block, then $\pi \uparrow \mathcal{B}$ is the finest partition π ' such that $\pi \sqsubseteq \pi$ ' and \mathcal{B} is a subset of an element of π '

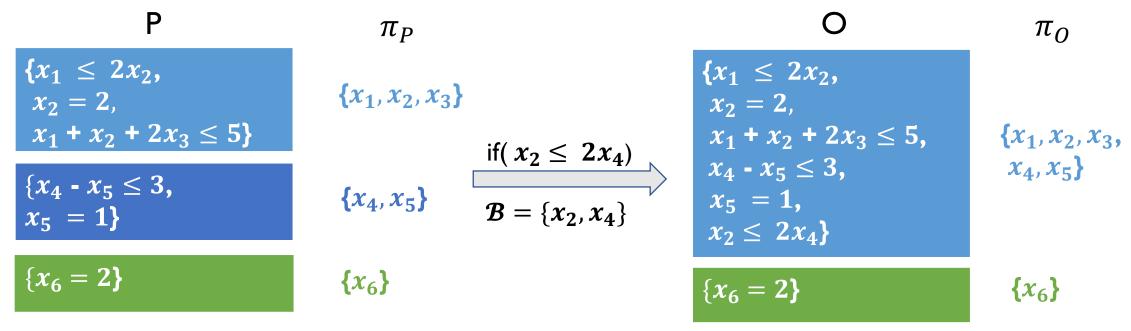


Theorem (finest partition after conditional):

If $O \neq \perp$ and let \mathcal{B} be block containing all variables appearing in the conditional, then $\pi_0 = \pi_P \uparrow \mathcal{B}$

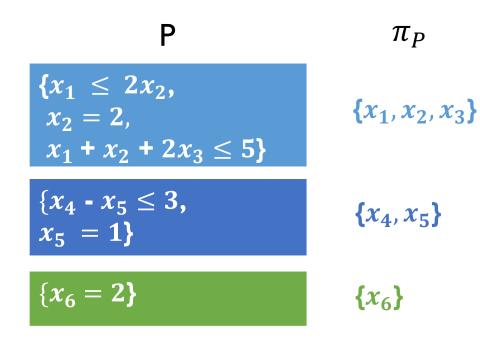
Operator: Conditional

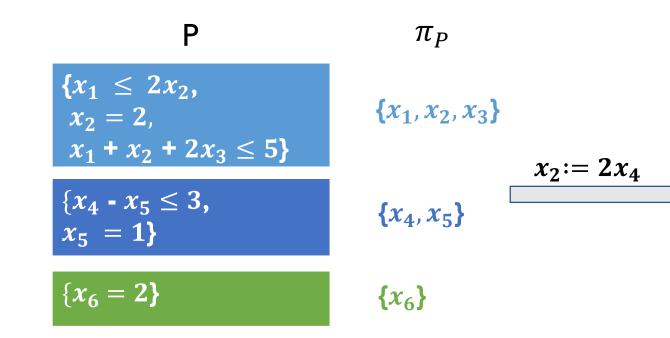
Definition: Let π be a partition and \mathcal{B} be a block, then $\pi \uparrow \mathcal{B}$ is the finest partition π ' such that $\pi \sqsubseteq \pi$ ' and \mathcal{B} is a subset of an element of π '

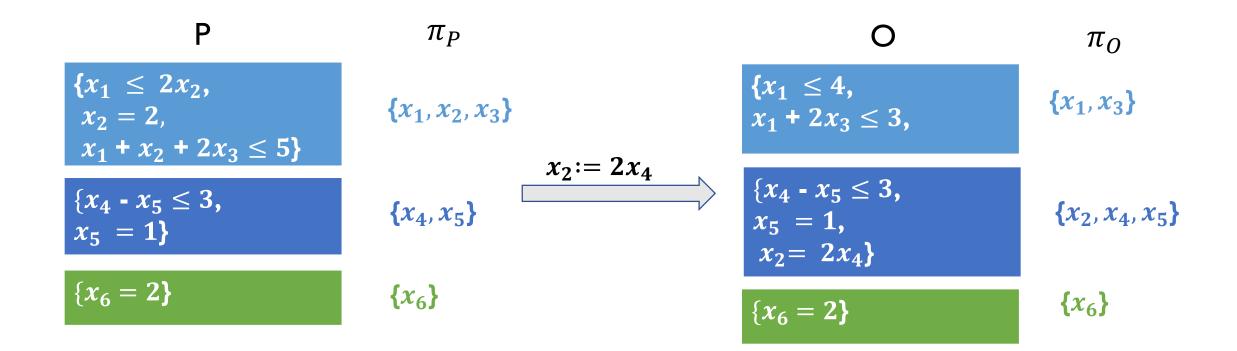


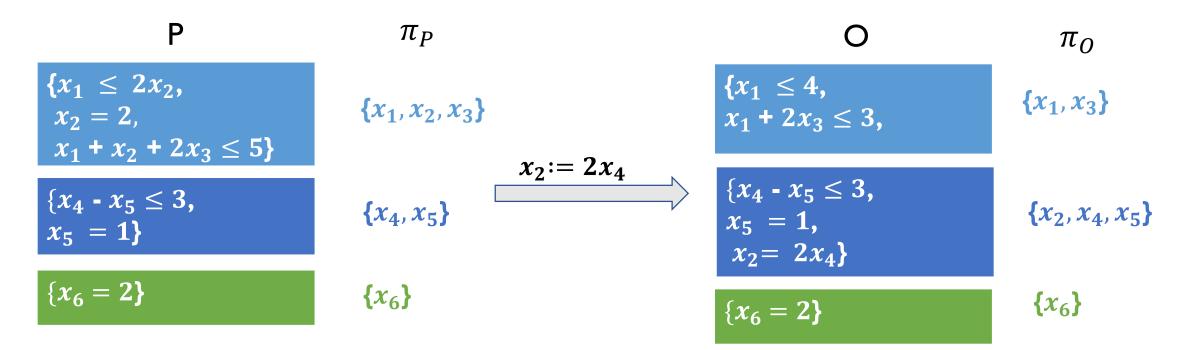
Theorem (finest partition after conditional):

If $O \neq \perp$ and let \mathcal{B} be block containing all variables appearing in the conditional, then $\pi_0 = \pi_P \uparrow \mathcal{B}$



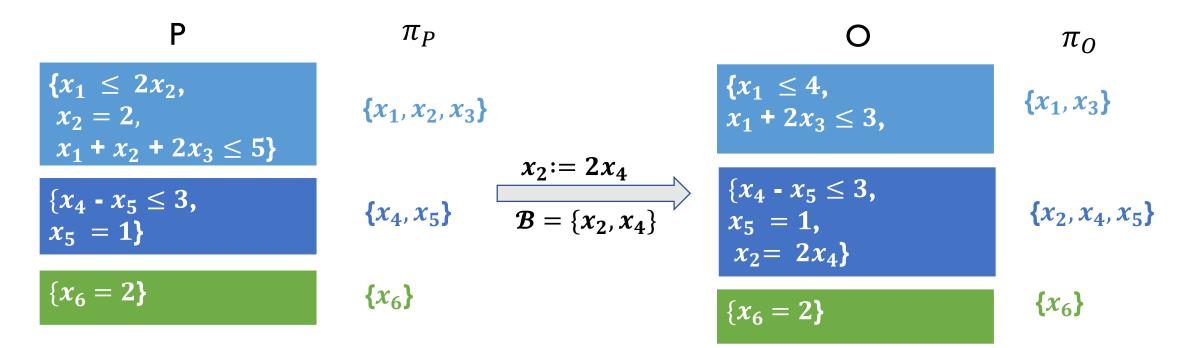






Theorem (finest partition after assignment):

Let \mathcal{B} be block containing all variables appearing for assignment $x_i \coloneqq e$, and let $\pi_i = \{\mathcal{X} \setminus \{x_i\}, \{x_i\}\}$, then $\pi_0 = (\pi_P \sqcap \pi_i) \uparrow \mathcal{B}$



Theorem (finest partition after assignment):

Let \mathcal{B} be block containing all variables appearing for assignment $x_i \coloneqq e$, and let $\pi_i = \{\mathcal{X} \setminus \{x_i\}, \{x_i\}\}$, then $\pi_0 = (\pi_P \sqcap \pi_i) \uparrow \mathcal{B}$

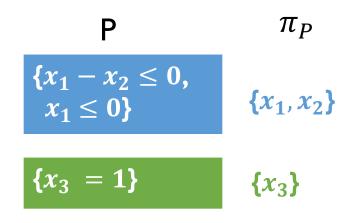
Lattice Operators

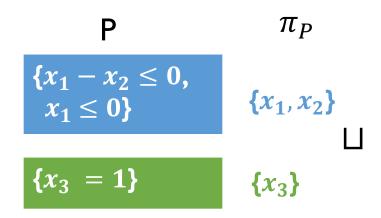
Lattice Operators

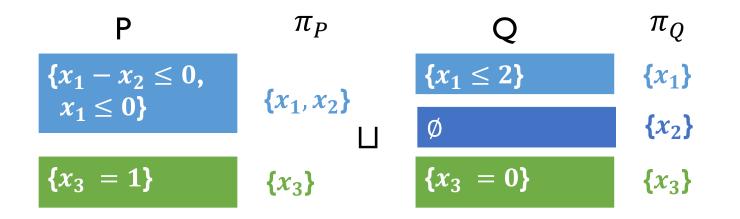
Theorem (finest partition for \sqsubseteq): If $P \sqsubseteq Q$ and $P \neq \bot$, then $\pi_Q \sqsubseteq \pi_P$

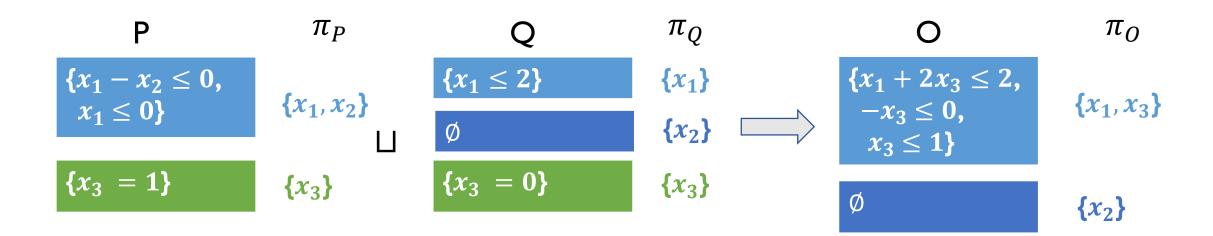
Theorem: (finest partition after \sqcap): If $P \sqcap Q \neq \bot$, then $\pi_0 = \pi_P \sqcup \pi_Q$

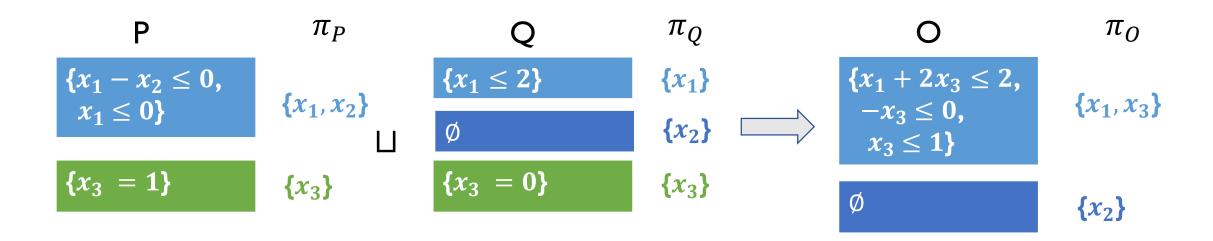
For join (1), no general relationship exists between π_0 , π_P and π_Q



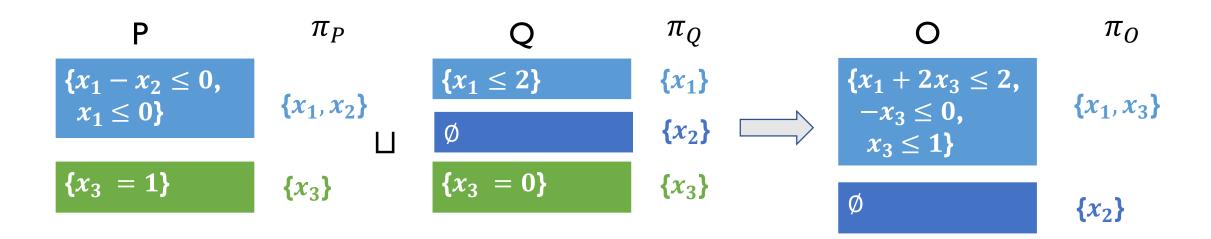






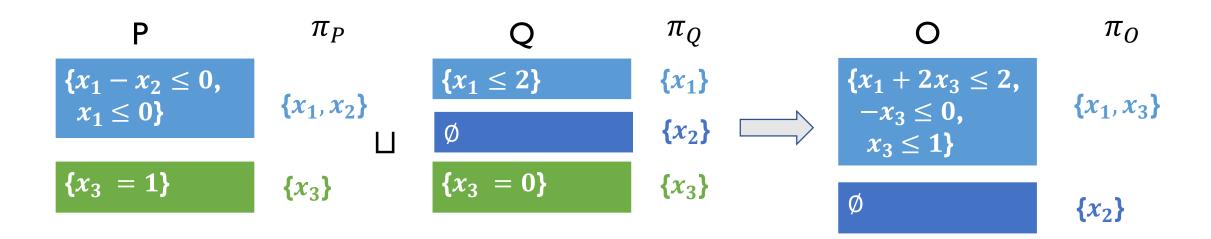


 $\pi_P \sqcup \pi_Q = \pi_P \neq \pi_O$



 $\pi_P \sqcup \pi_Q = \pi_P \neq \pi_0$

 $\pi_P \sqcap \pi_Q = \pi_Q \neq \pi_O$

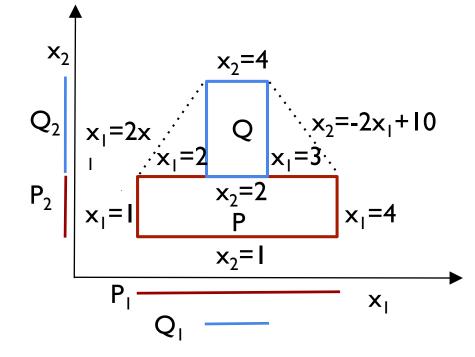


 $\pi_P \sqcup \pi_Q = \pi_P \neq \pi_O$ $\pi_P \sqcap \pi_O = \pi_O \neq \pi_O$

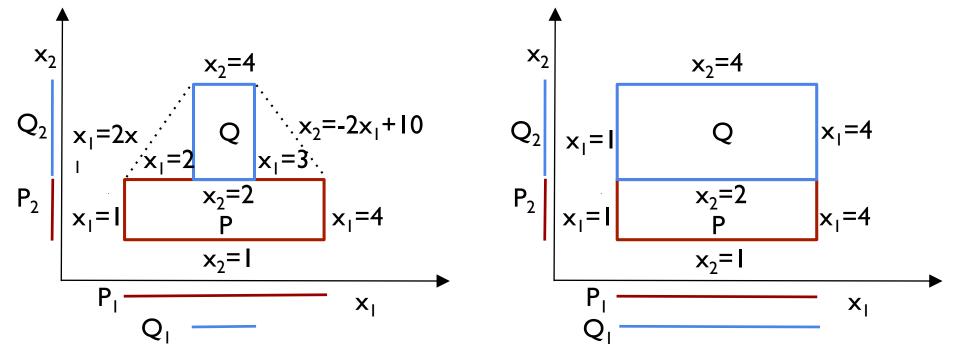
For Join, π_0 depends on both P and Q

Theorem: Let P and Q be two Polyhedra with the same permissible partition $\pi = \{X_1, X_2, ..., X_r\}$ and let $\overline{\pi}$ be a permissible partition for the join, that is, $\pi_{P \sqcup Q} \sqsubseteq \overline{\pi}$. If for any block $X_k \in \pi$, $P_k = Q_k$, then $X_k \in \overline{\pi}$

Theorem: Let P and Q be two Polyhedra with the same permissible partition $\pi = \{X_1, X_2, ..., X_r\}$ and let $\overline{\pi}$ be a permissible partition for the join, that is, $\pi_{P \sqcup Q} \sqsubseteq \overline{\pi}$. If for any block $X_k \in \pi$, $P_k = Q_k$, then $X_k \in \overline{\pi}$



Theorem: Let P and Q be two Polyhedra with the same permissible partition $\pi = \{X_1, X_2, ..., X_r\}$ and let $\overline{\pi}$ be a permissible partition for the join, that is, $\pi_{P \sqcup Q} \sqsubseteq \overline{\pi}$. If for any block $X_k \in \pi$, $P_k = Q_k$, then $X_k \in \overline{\pi}$



Operators with Permissible Partitions

Operators with Permissible Partitions

Theorem (permissible partition after join):

Let $\overline{\pi} = \overline{\pi}_P \sqcup \overline{\pi}_Q$ and $\mathcal{U} = \{\mathcal{X}_k \mid P_k = Q_k, \mathcal{X}_k \in \overline{\pi}\}.$ Then $\overline{\pi}_{P \sqcup Q} = \mathcal{U} \cup \bigcup_{\mathcal{T} \in \overline{\pi} \setminus \mathcal{U}} \mathcal{T}$ is permissible for $P \sqcup Q$

Theorem (permissible partition after meet): $\overline{\pi}_P \sqcup \overline{\pi}_Q$ is permissible for $P \sqcap Q$

Theorem (permissible partition after conditional): If output $O \neq \bot$, then, $\overline{\pi}_P \uparrow \mathcal{B}$ is permissible for conditional

Theorem (permissible partition after assignment): $\overline{\pi}_P \uparrow \mathcal{B}$ is permissible for the output O of assignment

Asymptotic Complexity of Operators with Permissible Partitions

Operator	Before (using both)	Our work (using decomposition)
Join (⊔)	0(<i>ng</i>)	$O(\sum_{i=1}^{r} n_i m_i g_i + n_{max} m_{max})$
Meet (⊓)	0(<i>nm</i>)	$O(\sum_{i=1}^{r} n_i m_i)$
Inclusion (\sqsubseteq)	0(<i>ngm</i>)	$O(\sum_{i=1}^{r} n_i m_i g_i)$
Assignment	0(<i>ng</i>)	$O(n_{max}g_{max})$
Conditional	0(<i>n</i>)	$O(n_{max})$
Conversion	exp(n,g)	$exp(n_{max}, g_{max})$

r: number of blocks

We compared performance of ELINA against NewPolka and PPL

Using the Seahorn verification framework [CAV'15]

- written in C, analyzes llvm-bitcode
- produces Polyhedra invariants
- > 1500 benchmarks from the software verification competition

Time limit: 4 hours

Memory limit: 12 GB

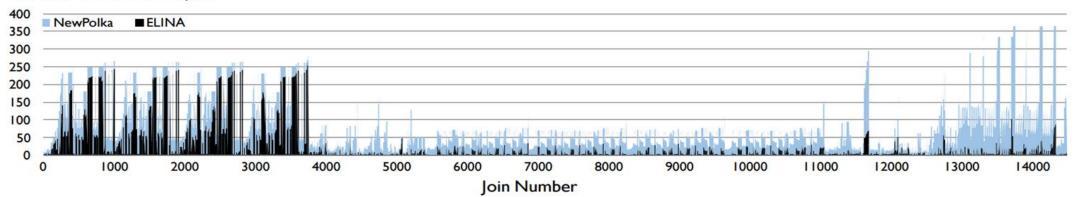
Benchmark	Category	gory LOC NewPolka PPL		PPL]	ELINA	Speedup ELINA vs.			
			time(s)	memory(GB)	time(s)	memory(GB)	time(s)	memory(GB)	NewPolka	PPL
firewire_firedtv	LD	14506	1367	1.7	331	0.9	0.4	0.2	3343	828
net_fddi_skfp	LD	30186	5041	11.2	6142	7.2	9.2	0.9	547	668
mtd_ubi	LD	39334	3633	7	MO	MO	4	0.9	908	>38
usb_core_main0	LD	52152	11084	2.7	4003	1.4	65	2	170	62
tty_synclinkmp	LD	19288	TO	ТО	MO	MO	3.4	0.1	>4235	>1186
scsi_advansys	LD	21538	ТО	ТО	ТО	ТО	4	0.4	>3600	>3600
staging_vt6656	LD	25340	ТО	ТО	ТО	ТО	2	0.4	>7200	>7200
net_ppp	LD	15744	TO	ТО	10530	0.15	924	0.3	>16	11.4
p10_100	CF	592	841	4.2	121	0.9	11	0.8	76	11
p16_140	CF	1783	MO	MO	MO	MO	11	3	>69	>24
p12_157	CF	4828	MO	MO	MO	MO	14	0.8	>71	>15
p13_153	CF	5816	MO	MO	MO	MO	54	2.7	>50	>26
p19_159	CF	9794	MO	MO	MO	MO	70	1.7	>15	>4
ddv_all	HM	6532	710	1.4	85	0.5	0.05	0.1	12772	1700

Benchmark	Category	LOC	1	NewPolka	PPL		ELINA		Speedup ELINA vs.	
			time(s)	memory(GB)	time(s)	memory(GB)	time(s)	memory(GB)	NewPolka	PPL
firewire_firedtv	LD	14506	1367	1.7	331	0.9	0.4	0.2	3343	828
net_fddi_skfp	LD	30186	5041	11.2	6142	7.2	9.2	0.9	547	668
mtd_ubi	LD	39334	3633	7	MO	MO	4	0.9	908	>38
usb_core_main0	LD	52152	11084	2.7	4003	1.4	65	2	170	62
tty_synclinkmp	LD	19288	TO	ТО	MO	MO	3.4	0.1	>4235	>1186
scsi_advansys	LD	21538	TO	ТО	ТО	ТО	4	0.4	>3600	>3600
<pre>staging_vt6656</pre>	LD	25340	ТО	ТО	ТО	ТО	2	0.4	>7200	>7200
net_ppp	LD	15744	ТО	ТО	10530	0.15	924	0.3	>16	11.4
p10_100	CF	592	841	4.2	121	0.9	11	0.8	76	11
p16_140	CF	1783	MO	MO	MO	MO	11	3	>69	>24
p12_157	CF	4828	MO	MO	MO	MO	14	0.8	>71	>15
p13_153	CF	5816	MO	MO	MO	MO	54	2.7	>50	>26
p19_159	CF	9794	MO	MO	MO	MO	70	1.7	>15	>4
ddv_all	HM	6532	710	1.4	85	0.5	0.05	0.1	12772	1700

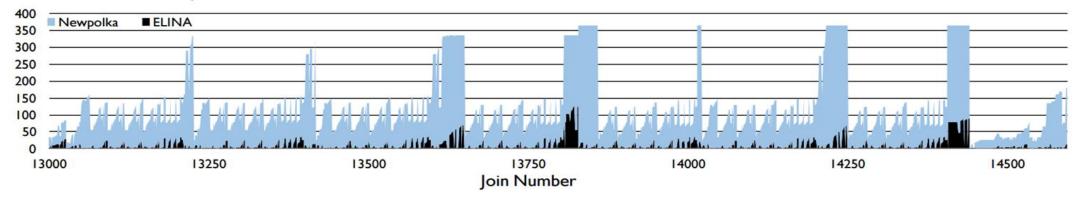
Benchmark	Category	LOC	1	NewPolka	PPL		ELINA		Speedup ELINA vs.	
			time(s)	memory(GB)	time(s)	memory(GB)	time(s)	memory(GB)	NewPolka	PPL
firewire_firedtv	LD	14506	1367	1.7	331	0.9	0.4	0.2	3343	828
net_fddi_skfp	LD	30186	5041	11.2	6142	7.2	9.2	0.9	547	668
mtd_ubi	LD	39334	3633	7	MO	MO	4	0.9	908	>38
usb_core_main0	LD	52152	11084	2.7	4003	1.4	65	2	170	62
tty_synclinkmp	LD	19288	TO	ТО	MO	MO	3.4	0.1	>4235	>1186
scsi_advansys	LD	21538	TO	ТО	ТО	ТО	4	0.4	>3600	>3600
staging_vt6656	LD	25340	ТО	ТО	ТО	ТО	2	0.4	>7200	>7200
net_ppp	LD	15744	ТО	ТО	10530	0.15	924	0.3	>16	11.4
p10_100	CF	592	841	4.2	121	0.9	11	0.8	76	11
p16_140	CF	1783	MO	MO	MO	MO	11	3	>69	>24
p12_157	CF	4828	MO	MO	MO	MO	14	0.8	>71	>15
p13_153	CF	5816	MO	MO	MO	MO	54	2.7	>50	>26
p19_159	CF	9794	MO	MO	MO	MO	70	1.7	>15	>4
ddv_all	HM	6532	710	1.4	85	0.5	0.05	0.1	12772	1700

Evaluation

Number of variables at join



Number of variables at join: zoom-in on 13000 onwards

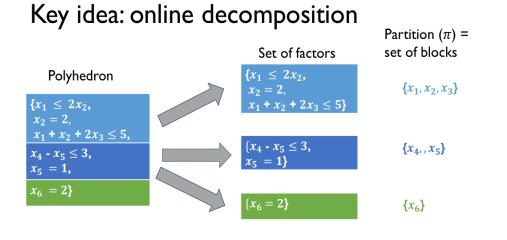


 $n_{ELINA} < n_{NewPolka}$, large speedup as conversion is exponential in n

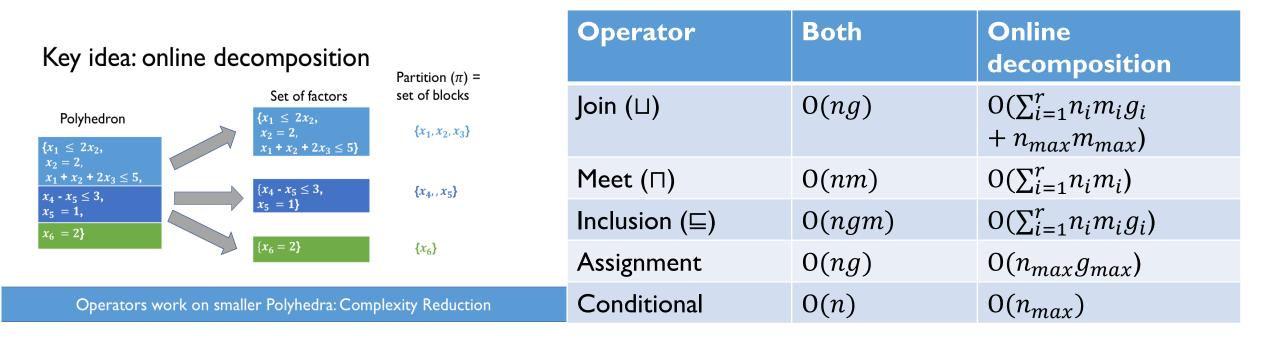
Related Work

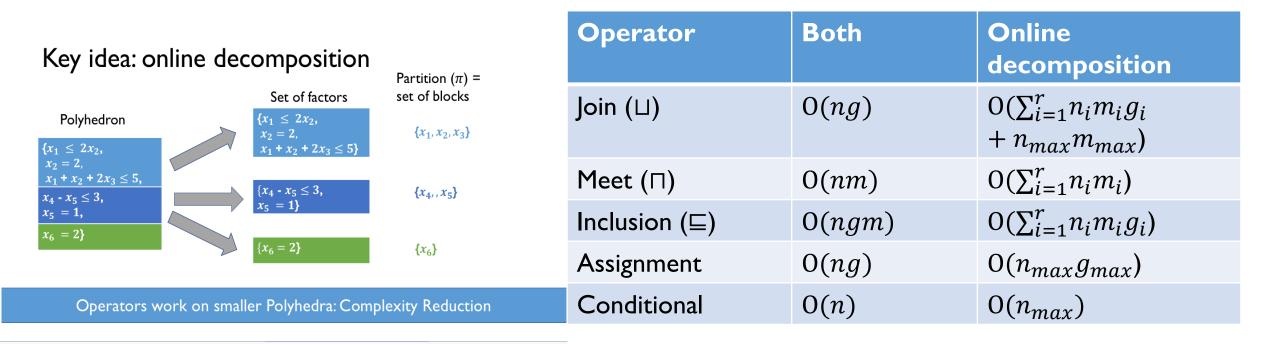
Related Work

- Variable Packing
 - Blanchet et al. [PLDI'03]
 - decomposition based on syntactic criteria
 - loses precision
- Matrix based decomposition
 - Halbwachs et al. [FMSD'06]
 - does not work with generators
 - decomposition too coarse for join



Operators work on smaller Polyhedra: Complexity Reduction





ELINA

http://elina.ethz.ch

Key idea: online decomposition	Partition (π) =	Operator	Both	Online decompo	Online decomposition	
PolyhedronSet of factors $\{x_1 \leq 2x_2, x_2 = 2, x_1 + x_2 + 2x_3 \leq 5\}$	set of blocks $\{x_1, x_2, x_3\}$	Join (⊔)	0(<i>ng</i>)	$\begin{array}{l}ng) \\ ng) \\ + n_{max}m_{t} \end{array}$		
$x_{2} = 2, x_{1} + x_{2} + 2x_{3} \le 5, x_{4} - x_{5} \le 3, x_{4} - x_{5} \le 3, $	$\{x_{4'}, x_5\}$	Meet (⊓)	0(<i>nm</i>)	$O(\sum_{i=1}^{r} n_i n_i)$	$O(\sum_{i=1}^{r} n_i m_i)$	
$x_5 = 1,$ $x_6 = 2$		Inclusion (\sqsubseteq)	0(ngm)	$O(\sum_{i=1}^{r} n_i n_i)$	$O(\sum_{i=1}^{r} n_i m_i g_i)$	
${x_6 = 2}$	$\{x_6\}$	Assignment	O(ng)	$0(n_{max}g_n)$	$O(n_{max}g_{max})$	
Operators work on smaller Polyhedra: Comple	Conditional	0(<i>n</i>)	$O(n_{max})$			
	Λ	Driver	NewPolka	PPL	ELINA	
ELIN	A	500 var39K LOC	OOM (> 12 GB)	<mark>OOM</mark> (> 12 GB)	4 sec 0.9 GB	
<u>http://elina.ethz</u>	<u>ch</u>	 650 var 25K LOC 	<mark>TO</mark> (> 4 hr)	<mark>TO</mark> (> 4 hr)	2 sec 0.4 GB	