
55

A Practical Construction for Decomposing Numerical
Abstract Domains

GAGANDEEP SINGH, ETH Zurich, Switzerland

MARKUS PÜSCHEL, ETH Zurich, Switzerland

MARTIN VECHEV, ETH Zurich, Switzerland

Numerical abstract domains such as Polyhedra, Octahedron, Octagon, Interval, and others are an essential
component of static program analysis. The choice of domain offers a performance/precision tradeoff ranging
from cheap and imprecise (Interval) to expensive and precise (Polyhedra). Recently, significant speedups were
achieved for Octagon and Polyhedra by manually decomposing their transformers to work with the Cartesian
product of projections associated with partitions of the variable set. While practically useful, this manual
process is time consuming, error-prone, and has to be applied from scratch for every domain.

In this paper, we present a generic approach for decomposing the transformers of sub-polyhedra domains
along with conditions for checking whether the decomposed transformers lose precision with respect to
the original transformers. These conditions are satisfied by most practical transformers, thus our approach
is suitable for increasing the performance of these transformers without compromising their precision.
Furthermore, our approach is łblack box:ž it does not require changes to the internals of the original non-
decomposed transformers or additional manual effort per domain.

We implemented our approach and applied it to the domains of Zones, Octagon, and Polyhedra. We then
compared the performance of the decomposed transformers obtained with our generic method versus the
state of the art: the (non-decomposed) PPL for Polyhedra and the much faster ELINA (which uses manual
decomposition) for Polyhedra and Octagon. Against ELINA we demonstrate finer partitions and an associated
speedup of about 2x on average. Our results indicate that the general construction presented in this work is
a viable method for improving the performance of sub-polyhedra domains. It enables designers of abstract
domains to benefit from decomposition without re-writing all of their transformers from scratch as required
by prior work.

CCS Concepts: · Theory of computation→ Program verification; Program analysis; Abstraction;

Additional Key Words and Phrases: Abstract Interpretation, Numerical Domains, Domain Decomposition,

Performance Optimization

ACM Reference Format:

Gagandeep Singh, Markus Püschel, and Martin Vechev. 2018. A Practical Construction for Decomposing
Numerical Abstract Domains. Proc. ACM Program. Lang. 2, POPL, Article 55 (January 2018), 28 pages. https:
//doi.org/10.1145/3158143

1 INTRODUCTION

Numerical abstract domains are a key component of modern static program analyzers [Blanchet
et al. 2003; Gurfinkel et al. 2015]. The design of these domains remains an art as one is faced

Authors’ addresses: Gagandeep Singh, Department of Computer Science, ETH Zurich, Zürich, Switzerland, gsingh@inf.ethz.
ch; Markus Püschel, Department of Computer Science, ETH Zurich, Zürich, Switzerland, pueschel@inf.ethz.ch; Martin
Vechev, Department of Computer Science, ETH Zurich, Zürich, Switzerland, martin.vechev@inf.ethz.ch.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.
2475-1421/2018/1-ART55
https://doi.org/10.1145/3158143

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3158143
https://doi.org/10.1145/3158143
https://doi.org/10.1145/3158143


55:2 Gagandeep Singh, Markus Püschel, and Martin Vechev

with two critical choices while fine-tuning the cost and precision of their domain: (a) the shape of
constraints which determines the domain’s expressivity, and (b) the precision and scalability of its
abstract transformers.
Improving scalability of abstract transformers is an inherently hard problem since limiting the

shape of the constraints allowed in the domain does not necessarily guarantee reduction in the
transformer’s asymptotic complexity. For example, the best transformers for assignments in weakly
relational domains such as Octagon [Miné 2006], Zones [Miné 2002], and TVPI [Simon and King
2010] have the same worst-case exponential complexity as those in the most expensive Polyhedra
[Cousot and Halbwachs 1978] domain.

Because of the importance of scaling the analysis to realistic applications, there has been increased
interest in improving the performance of existing domains. The approaches can be roughly divided
into two classes: (a) implement less precise transformers tuned to the specific verification task
[Blanchet et al. 2003; Heo et al. 2016; Venet and Brat 2004], or (b) maintain the same precision as
the existing implementation and improve performance by designing specialized algorithms and
data structures optimized for the particular domain [Gange et al. 2016; Jourdan 2017]. The former
approach uses approximation (of the best or standard transformers) with the hope of improving
performance in practical scenarios while maintaining sufficient precision needed to verify the
property of interest. The latter approach, while challenging to devise, is appealing because it does
not explicitly lose precision yet can still dramatically increase overall performance.

One technique for achieving this goal is the concept of decomposition. It is based on the observation
that abstract elements may be decomposed into Cartesian products over disjoint subsets of variables;
hence, a given domain transformer does not need to be applied on the complete abstract element
but rather only on some part of it, thus reducing cost. The first attempt at decomposition was for
the Polyhedra [Halbwachs et al. 2003, 2006] domain where the abstract elements were decomposed
based on partitioning a variable set into subsets such that constraints exist only between the
variables in the same subset. The partitioning was performed on the fly, however the partitions
produced were too coarse and no implementation is publicly available.
Recently, the concept of online decomposition was revisited and applied to achieve orders of

magnitude speed-ups over the state of the art [Singh et al. 2015, 2017]. The underlying idea is
to maintain and continuously update the partitions based on the transformer semantics. Imple-
mentations exist for the Octagon [Singh et al. 2015] and Polyhedra [Singh et al. 2017] domains. In
both cases, the decomposition was manually designed from scratch for the standard transformers
of the particular domain. The downside of this approach is that the substantial effort invested in
decomposing the transformers of the specific implementation of the domain cannot be reused and
needs to be repeated for every new implementation. This task is difficult and error-prone as it
requires devising new algorithms and data structures from scratch each time.
To illustrate the issue, consider an element ℐ ≙ {−x1 − x2 ≤ 0,−x3 ≤ 0,−x4 ≤ 0} in the Octagon

domain (which captures constraints of the form ±xi ± x j ≤ c,c ∈ R, between the program variables)
and the conditional expression x2+x3+x4 ≤ 1. There are multiple ways to define a sound conditional
transformer in the Octagon domain for the given conditional expression. One may define a sound
conditional transformer T1 that adds the non-redundant constraint −x1 + x4 ≤ 1 to ℐ resulting in
the output ℐ ′ ≙ {−x1 − x2 ≤ 0,−x3 ≤ 0,−x4 ≤ 0,−x1 + x4 ≤ 1} whereas another transformer T2 may
add x2 + x3 ≤ 1 to ℐ resulting in ℐ ′′ ≙ {−x1 − x2 ≤ 0,−x3 ≤ 0,−x4 ≤ 0,x2 + x3 ≤ 1}. The specialized
decomposition for the Octagon domain [Singh et al. 2015] requires access to the exact definition of
the transformer, i.e., it will produce different decomposition for T1 and T2 as the set of variables in
the constraints added by the two transformers are disjoint.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



A Practical Construction for Decomposing Numerical Abstract Domains 55:3

This work. The key objective of this work is to bring the power of decomposition to all sub-
polyhedra domains without requiring complex manual effort from the domain designer. This
enables domain designers to achieve speed-ups without requiring them to rewrite all abstract
transformers from scratch each time.

More formally, our goal is to provide a systematic correct-by-construction method that, given a
sound abstract transformer T in a sub-polyhedra domain (e.g., Zones), generates a sound decom-
posed version of T that is faster than T and does not require any change to the internals of T. In
this paper we present a construction that achieves this objective under certain conditions. We also
show that the obtained decomposed transformers are faster than the prior, hand-tuned decomposed
domains from [Singh et al. 2015, 2017].

Main contributions. Our paper makes the following contributions:

● We introduce a general construction for obtaining decomposed transformers from given
non-decomposed transformers of existing numerical domains. Our construction is łblack-
box:ž it does not require changes to the underlying algorithms implemented in the original
non-decomposed transformers.
● We provide conditions on the non-decomposed transformers under which our decomposition
maintains precision and equivalence at fixpoint.
● We apply our method to decompose standard transformers of three popular and expen-
sive domains: Polyhedra, Octagon, and Zones. For these we provide complete end-to-end
implementations as part of ELINA [eli].
● We evaluate the effectiveness of our decomposed analysis against state-of-the-art implemen-
tations on large real-world benchmarks including Linux device drivers. Our evaluation shows
up to 6x and 2x speedups compared to state-of-the-art manually decomposed domains and or-
ders of magnitude speedups compared to non-decomposed Polyhedra and Octagon. For Zones,
we achieve speedups of up to 6x compared to our own, non-decomposed implementation.

2 GENERIC MODEL FOR NUMERICAL ABSTRACT DOMAINS

An abstract domain consists of a set of abstract elements and a set of transformers that model
the effect of program statements and expressions (assignment, conditionals, etc.) on the abstract
elements. Let 𝒳 ≙ {x1,x2, . . . ,xn} be a set of variables. In this paper, we consider sub-polyhedra
domains, i.e., numerical abstract domains 𝒟 that encode linear relationships between the variables
in 𝒳 of the form:

n

∑
i≙1

aixi ⊗ c, where xi ∈ 𝒳 ,ai ∈ Z,⊗ ∈ {≤,≙},c ∈ 𝒞. (1)

Typical choices for 𝒞 include Q (rationals) and R (reals). As with any abstraction, the design of a
numerical domain is guided by the cost vs. precision tradeoff. For instance, the Polyhedra domain
[Cousot and Halbwachs 1978] is the most precise numerical domain yet it is also the most expensive.
On the other hand, the Interval (Box) domain is cheap but also very imprecise as it does not preserve
relational information between variables. Between these two sit a number of domains with varying
degrees of precision and cost: examples include Two Variables Per Inequality (TVPI) [Simon and
King 2010], Octagon [Miné 2006], and Zones [Miné 2002].

Representing domain constraints. We introduce notation for describing the set of constraints a
given domain 𝒟 can express for the variables in 𝒳 . This set of constraints is referred to as ℒ𝒳 ,𝒟

and is determined by four components (n,ℛ,𝒯 ,𝒞):

● The size n of the variable set 𝒳 .

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



55:4 Gagandeep Singh, Markus Püschel, and Martin Vechev

Table 1. Instantiation of constraints expressible in various numerical domains.

Domain ℛ 𝒯 𝒞 Reference

Polyhedra Z
n {≤,≙} Q,R [Cousot and Halbwachs 1978]

Linear equality Z
n {≙} Q,R [Karr 1976]

Octahedron U
n {≤,≙} Q,R [ClarisÃş and Cortadella 2007]

Stripes {(a,a,−1, 0, . . . , 0) ⋃︀ a ∈ Z}∪ {≤,≙} Q,R [Ferrara et al. 2008]
{(0,a,−1, 0, . . . , 0) ⋃︀ a ∈ Z}

TVPI Z
2 × {0}n−2 {≤,≙} Q,R [Simon and King 2010]

Octagon U
2 × {0}n−2 {≤,≙} Q,R [Miné 2006]

Logahedra L
2 × {0}n−2 {≤,≙} Q,R [Howe and King 2009]

Zones {1, 0} × {0,−1} × {0}n−2 {≤,≙} Q,R [Miné 2002]

Upper bound {1} × {−1} × {0}n−2 {≤} {0} [Logozzo and Fähndrich 2008]

Interval {1,−1} × {0}n−1 {≤,≙} Q,R [Cousot and Cousot 1976]

● A relation ℛ ⊆ ℛ1 × ℛ2 × ⋅ ⋅ ⋅ ×ℛn to describe the universe of possible coefficients. Each
ℛi ⊆ Z is a set of integers defining the allowed values for the coefficient ai . Typical examples
forℛi include Z,U ≙ {−1, 0, 1}, and L ≙ {−2k , 0, 2k ⋃︀ k ∈ Z}.
● The set 𝒯 ⊆ {≤,≙} determining equality/inequality constraints.
● The set 𝒞 containing the allowed values for the constant c in (1). Typical examples include Q
and R.

Table 1 shows common constraints in the above notation allowed by different numerical domains.
The set of constraints ℒ𝒳 ,𝒟 representable by a domain 𝒟 contains all constraints of the form
∑n

i≙1 aixi ⊗ c where: (i) the coefficient list of each expression ∑n
i≙1 aixi is a permutation of a tuple

inℛ, (ii) ⊗ ∈ 𝒯 , and (iii) the constant c ∈ 𝒞. For instance, the possible constraints ℒ𝒳 ,Octagon for the
Octagon domain over real numbers are described via the tuple (n,U2 × {0}n−2,{≤,≙},R).

Example 2.1. Consider a program with four variables and a fictive domain that can relate at most
two:

𝒳 ≙ {x1,x2,x3,x4} and ℒ𝒳 ,𝒟 ∶ (4,U2
× {0}2,{≤,≙},{1, 2}).

Here, the constraint 2x1 + 3x4 ≤ 2 ⇑∈ ℒ𝒳 ,𝒟 as no permutation of tuples in U2 × {0}2 can produce
(2, 0, 0, 3). Similarly, x2−x3 ≤ 3 ⇑∈ ℒ𝒳 ,𝒟 even though there exists a permutation of tuples inU2×{0}2

that can produce (0, 1,−1, 0), but 3 ⇑∈ 𝒞. However, the constraints x2 − x3 ≤ 1 and x2 − x3 ≙ 2 are in
ℒ𝒳 ,𝒟 .

Defining an abstract domain. An abstract element ℐ in a domain 𝒟 is a conjunction of a finite
number of constraints from ℒ𝒳 ,𝒟 . By abuse of notation we will represent ℐ as a set of constraints
(interpreted as a conjunction of the constraints in the set). The set of all possible abstract elements
in 𝒟 is denoted with 𝒫𝒟 and typically forms a lattice (𝒫𝒟,⊑,⊔,⊓,⊺,�) with respect to the defined
domain order ⊑. Given abstract elements ℐ and ℐ ′, ℐ ⊔ ℐ ′ is the smallest element in the domain
covering both ℐ and ℐ ′ and is computed or approximated by the join transformer. Similarly
ℐ ⊓ ℐ ′ is the meet, computed, e.g., as ℐ ∪ ℐ ′. There are usually around 40 abstract transformers
in a given domain 𝒟. While our theory handles all transformers, our presentation focuses on
the core transformers, namely: conditional containing a linear constraint, assignment with a
linear expression, meet (⊓), join (⊔), and widening (▽). We chose these because they are the
most expensive transformers in the domain and thus their design shows the most variation, i.e.,
they can be implemented in multiple ways. We note that there is an equivalent representation
of an abstract element based on the generator representation where the element is encoded as a

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



A Practical Construction for Decomposing Numerical Abstract Domains 55:5

collection of vertices, rays, and lines. In this paper, we use the constraint representation as it leads
to a clearer exposition of the ideas. However, our technical results are also valid with the generator
representation.
As is standard, we use the meet-preserving concretization function γ to denote with γ (ℐ) the

concrete element (polyhedron) represented by the abstract element ℐ . We note that it is possible
for ℐ to include redundant constraints, that is, removing a constraint from ℐ may not change the
represented concrete element γ (ℐ). Further, the minimal (without any redundancy) representation
of a concrete element γ (ℐ) need not be unique, i.e., there could be two distinct abstract elements ℐ
and ℐ ′ with γ (ℐ) ≙ γ (ℐ ′):

Example 2.2. ℐ ≙ {x1 ≙ 0,x2 ≙ 0} and ℐ ′ ≙ {x1 ≙ 0,x2 ≙ 0,x1 ≙ x2} represent the same concrete
element γ (ℐ) in the Polyhedra domain. However, ℐ ′ contains the redundant constraint x1 ≙ x2. ℐ
is not the only minimal representation as ℐ ′′ ≙ {x1 ≙ 0,x1 ≙ x2} is also minimal for γ (ℐ).

We next define what it means for an abstract transformer to be sound.1

Definition 2.1. A given abstract transformer T is sound w.r.t to its concrete transformer T # iff for
any element ℐ ∈ 𝒟, T #(γ (ℐ)) ⊆ γ (T (ℐ)).

The soundness criterion is naturally extended to transformers with multiple arguments.

Definition 2.2. We say an abstract domain𝒟 is closed (also called forward complete in [Giacobazzi
et al. 2000; Ranzato and Tapparo 2004]) for a concrete transformer T # (e.g., conditional, meet) iff it
can be done precisely in the domain, i.e., if there exists an abstract transformer T corresponding to
that concrete transformer such that for any abstract element ℐ in 𝒟, γ (T (ℐ)) ≙ T #(γ (ℐ)).

The Polyhedra domain is closed for conditional, assignment, and meet, but not for the join.
All other domains in Table 1 are only closed for the meet. Indeed, a crucial aspect of abstract
interpretation is to permit sound approximations for transformers for which the domain is not
closed.

Example 2.3. The Octagon domain is not closed for the conditional transformer. For example,
if the condition is x1 − 2x2 ≤ 0 and the abstract element is ℐ ≙ {x1 ≤ 1,x2 ≤ 0}, then the concrete
element T #(γ (ℐ)) ≙ {x1 ≤ 1,x2 ≤ 0,x1 − 2x2 ≤ 0} is not representable exactly in the Octagon
domain (because the constraint x1 − 2x2 ≤ 0 is not exactly representable).

A useful concept in analysis (and one we refer to throughout the paper) is that of a best abstract
transformer.

Definition 2.3. A (unary) abstract transformerT in𝒟 is best iff for any other sound unary abstract
transformerT ′ (corresponding to the same concrete transformerT #) it holds that for any element ℐ
in 𝒟, T always produces a more precise result (in the concrete), that is, γ (T (ℐ)) ⊆ γ (T ′(ℐ)). The
definition is naturally lifted to multiple arguments.

In Example 2.3, a possible sound approximation for the output in the Octagon domain is ℐ ′′ ≙ ℐ
while one best transformer would produce {x1 ≤ 0,x2 ≤ 0,x1 − x2 ≤ 0}. Since there can be multiple
abstract elements with the same concretization, there can be multiple best abstract transformers in
𝒟. The sub-polyhedra abstract domains we consider in this paper always come equipped with a
best transformer and are closed under meet.

1Throughout the paper we will simply use the term transformer to mean a sound abstract transformer.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



55:6 Gagandeep Singh, Markus Püschel, and Martin Vechev

3 DECOMPOSING ABSTRACT ELEMENTS

In this section we introduce the needed notation and concepts for decomposing abstract elements
and transformers. As in [Halbwachs et al. 2003; Singh et al. 2015, 2017], our approach to decompo-
sition is based on the observations that: (a) not all variables get related by a constraint in a given
abstract element ℐ , and (b) the number of variables affected by a program statement is small com-
pared to the size n of the set of program variables 𝒳 . These observations enable the decomposition
of ℐ into smaller pieces which, in turn, allow the derivation of abstract domain transformers with
reduced asymptotic complexity. Note that the decomposition is not fixed: during the iterations of
the analysis, new abstract elements are created and their decomposition is computed dynamically.
Overall, this results in better performance with respect to the original non-decomposed transformer.

We address the decomposition of abstract elements and transformers for𝒟 based on partitioning
the variable set 𝒳 . The set 𝒫𝒳 which consists of all partitions of 𝒳 forms the partition lattice

(𝒫𝒳 ,⊑,⊔,⊓,�,⊺). The elements of the lattice are ordered as follows: π ⊑ π ′, if every subset
of π is included in some subset of π ′ (π łis finerž than π ′). The lattice contains the usual least
upper bound (⊔) and greatest lower bound (⊓) operators. In the partition lattice, ⊺ ≙ {𝒳} and
� ≙ {{x1},{x2}, . . . ,{xn}}.

Given an abstract element ℐ , we partition the set of program variables 𝒳 into subsets 𝒳k that we
call blocks such that constraints only exist between variables in the same block. Each unconstrained
variable xi yields the singleton block {xi}. We write πℐ,𝒟 ≙ {𝒳1,𝒳2, . . . ,𝒳r} to denote the unique
finest partition for an element ℐ . For simplicity, we usually omit 𝒟 from the subscript and write πℐ .
The partition πℐ decomposes ℐ into a set of smaller abstract elements ℐk on the variables in a

block 𝒳k which we call factors. Each factor ℐk ⊆ ℐ is defined by the constraints that exist between
the variables in the corresponding block 𝒳k . ℐ can be recovered from the set of factors by taking
the union of the constraint sets ℐk .

Example 3.1. Consider the element ℐ ≙ {x1 − x2 ≤ 1,x3 ≤ 0,x4 ≤ 0} in the TVPI domain

𝒳 ≙ {x1,x2,x3,x4} and ℒ𝒳 ,TVPI ∶ (4,Z2 × {0}2,{≤,≙},Q).

Here 𝒳 can be partitioned into three blocks with respect to ℐ resulting in three factors:

πℐ ≙ {{x1,x2},{x3},{x4}}, ℐ1 ≙ {x1 − x2 ≤ 1}, ℐ2 ≙ {x3 ≤ 0}, and ℐ3 ≙ {x4 ≤ 0}.

For a given 𝒟, π� ≙ π⊺ ≙ � ≙ {{x1},{x2}, . . . ,{xn}}. More generally, note that ℐ ⊑ ℐ ′ does not
imply that πℐ′ is finer, coarser, or comparable to πℐ .

Different partitions for equivalent elements. To gain a deeper understanding of partitions for
abstract elements, there are two interesting points worth noting. First, it is possible that two
semantically equivalent abstract elements ℐ,ℐ ′ in the domain have different partitions. That is,
even if γ (I) ≙ γ (I ′), it may be the case that πℐ ≠ πℐ′ or πℐ ⊏ πℐ′ :

Example 3.2. Consider ℐ ≙ {x1 ≤ x2,x2 ≙ 0,x3 ≙ 0} with the finest partition πℐ ≙ {{x1,x2},{x3}},
ℐ ′ ≙ {x1 ≤ 0,x2 ≙ 0,x3 ≙ 0} with πℐ′ ≙ {{x1},{x2},{x3}} and ℐ ′′ ≙ {x1 ≤ x3,x2 ≙ 0,x3 ≙ 0} with
πℐ′′ ≙ {{x1,x3},{x2}} in the Polyhedra domain. Here γ (ℐ) ≙ γ (ℐ ′) ≙ γ (ℐ ′′), but the partitions
are pairwise different.

Second, it is possible that for a given abstract element ℐ , there exists an equivalent element ℐ ′

with finer partition but ℐ ′ is not representable in the domain. This shows a potential limitation of
syntactic partitions.

Example 3.3. Consider the Stripes domain

𝒳 ≙ {x1,x2,x3}, ℒ𝒳 ,Stripes ∶ {3,{(a,a,−1) ⋃︀ a ∈ Z} ∪ {(0,a,−1) ⋃︀ a ∈ Z},{≤,≙},Q},

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



A Practical Construction for Decomposing Numerical Abstract Domains 55:7

and the abstract element

ℐ ≙ {x1 + x2 − x3 ≙ 0,−x2 + x3 ≙ 0} with πℐ ≙ {x1,x2,x3}.

This domain cannot represent the equivalent element ℐ ′ ≙ {x1 ≙ 0,x2 −x3 ≙ 0} with partition πℐ′ ≙
{{x1},{x2,x3}}, which is finer than πℐ . This is because the constraint x1 ≙ 0 is not representable
in the Stripes domain.

It is important we guarantee that regardless of how approximate a given transformer T is, the
partition we end up computing for T is always sound (permissible) for the output abstract element
ℐ produced by T . Next, we formalize the notion of permissiveness [Singh et al. 2017]:

Definition 3.1. A partition π is permissible for an abstract element ℐ if it is coarser than πℐ , that
is, if π ⊒ πℐ .

The variables related in πℐ are also related in any permissible partition of ℐ , but not vice-versa.
In Example 3.1, {{x1,x2},{x3,x4}} is permissible for ℐ while {{x1},{x2,x3,x4}} is not. We will
generally use πℐ to denote a permissible partition for ℐ .

4 RECIPE FOR DECOMPOSING TRANSFORMERS

A primary objective of this work is to define a mechanical recipe which takes as input a sound
abstract transformer and produces as output a sound and decomposed variant of that transformer,
thus resulting in better analysis performance. In this section we describe the general recipe and
illustrate its actual use.

At first glance the above challenge appears fundamentally difficult because there are many ways
to define a sound transformer in a domain 𝒟. Standard implementations of popular numerical
domains like Octagon, Zones, TVPI, and others, do not necessarily implement the best transformers
as they can be expensive; instead the domains often approximate them. Interestingly, as pointed
out earlier, such an approximation can make the associated partition both coarser or finer. That is,
the partitioning function is not monotone. Here is an example illustrating this point:

Example 4.1. Consider the elements ℐ ≙ {x1 ≤ 0,x2 ≤ 0,x1 − x2 ≤ 0} with πℐ ≙ {{x1,x2}} and
ℐ ′ ≙ {x1 ≤ 0,x2 ≤ 0} with πℐ′ ≙ {{x1},{x2}} in the Polyhedra domain. Here, γ (ℐ) ⊂ γ (ℐ ′) and
πℐ ⊒ πℐ′ . Now consider the element ℐ ′′ ≙ {x1+x2 ≤ 0}with πℐ′′ ≙ {{x1,x2}}. Here, γ (ℐ ′) ⊂ γ (ℐ ′′)
and πℐ′ ⊑ πℐ′′ .

Definition 4.1. A transformerT in𝒟 is decomposable for input ℐ iff the output ℐO ≙ T (ℐ) results
in a partition πℐO ≠ ⊺. For binary transformers, the definition is analogous.

There are many ways to define sound approximations of the best transformers in 𝒟. As a
consequence, it is possible to have two transformers T1,T2 in 𝒟 on the same input ℐ such that one
produces the ⊺ partition for the output while the other does not. There are two principal ways to
obtain a decomposable transformer: (a) white box: here, one designs the transformer from scratch,
maintaining the (changing) partitions during analysis, and (b) black box: here, one provides a
construction for decomposing existing transformers without knowing their internals. In the next
section, we pursue the second approach and show that it is possible and, under certain conditions,
without losing precision. As a preview, we now describe the high-level steps that one needs to
perform dynamically in our black-box decomposition.

A construction for online transformer decomposition. There are three main steps for decomposing
a given transformer:

(1) compute (if needed) partitions for the input(s) of the transformer,

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



55:8 Gagandeep Singh, Markus Püschel, and Martin Vechev

(2) compute a partition for the output based on the program statement/expression and input
partition(s) from step 1,

(3) apply the transformer on one or more factors of the inputs from step 2.

We next describe these steps in greater detail.
In an ideal setting, one would always work with the finest partition for the inputs and the

output to (optimally) reduce the cost of the transformer. The finest partition for the inputs of
a given transformer can always be computed from scratch by taking the abstract element and
connecting the variables that occur in the same constraint in that element. The downside is that
this computation may incur significant overhead. For example, computing the finest partition for
an element in the Octagon domain from scratch has the same quadratic complexity (in the number
of variables) as the conditional, meet, and assignment transformers. Thus, it may nullify potential
performance gains from decomposing these transformers. In our approach we thus iteratively
maintain permissible partitions.
To compute the output partition, a naive way is to first run the transformer, obtain an abstract

element as a result, and then compute the partition for that element. Of course, this approach is
useless since running the standard transformer prevents performance gains. Thus, the challenge is
to determine first a permissible output partition at little cost so that then the transformers can be
applied only to relevant factors. Indeed, in our construction we compute a permissible partition
for the output based on permissible partitions of the input, the program statement, and possibly
additional information that is cheaply available.

In the last step, once the output partition is obtained, the associated abstract element is computed
directly in decomposed form by applying the original transformer to one or more factor(s) of
the input(s). Applying this transformer on smaller factors reduces its complexity and results in
increased performance. In certain cases, the permissible partition for the output can be further
refined after applying the transformer and without adding significant overhead. We identify such
cases in Section 5.

Our approach is generic in nature and can decompose the standard transformers of the existing
sub-polyhedra numerical abstract domains. We implemented our recipe and applied it to Polyhedra,
Octagon, and Zones. Using a set of large Linux device drivers, we show later in Section 6 the
performance of our generated decomposed transformers vs. transformers obtained via state-of-the-
art hand-tuned decomposition [Singh et al. 2015, 2017]. Our approach leads up to 6x speed-ups
for Polyhedra and up to 2x speed-ups for Octagon. This speed-up is due to our decomposition
theorems (discussed next) that enable, in certain cases, finer decomposition of abstract elements
than previously possible. Speedups compared to the original transformers without decomposition
are orders of magnitude larger. Further, we also decompose the Zones domain using our approach
(for which no previous decomposition exists) without changing the existing domain transformers.
We obtain a speedup up to 6x over non-decomposed implementation of the Zones domain. In
summary, our recipe is generic in nature yet leads to state-of-the-art performance for classic abstract
transformers.

5 DECOMPOSING DOMAIN TRANSFORMERS

In this section we show a construction that takes as input a sound and monotone transformer
in a given domain 𝒟 and produces a decomposed variant of the same transformer that operates
on part(s) of the input(s). The resulting decomposed transformer is always sound. We define
classes of transformers for which the output produced by the decomposed transformer has the
same concretization as the original non-decomposed transformer, i.e., there is no loss of precision.
Although our results apply to all transformers, we focus on the conditional, assignment, meet,

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



A Practical Construction for Decomposing Numerical Abstract Domains 55:9

join, and widening transformers. We also show how to obtain finer partitions than the manually
decomposed transformers for Polyhedra and Octagon considered in prior work [Singh et al. 2015,
2017].

Partitioned abstract elements and factors. Given an abstract element ℐ with permissible partition
πℐ ≙ {𝒳1, . . . ,𝒳r}, we denote the associated factors with ℐ(𝒳k), 1 ≤ k ≤ r . We will write a
decomposed abstract element ℐ as a set of constraints (and not as set of factors) just as we did
before, but always explicitly mention the associated partition.

Common partition. We assume that inputs ℐ,ℐ ′ for binary transformers are partitioned according
to a common permissible partition π common. This partition can always be computed as π common ≙
πℐ ⊔ πℐ′ , where πℐ ,πℐ′ are permissible partitions for ℐ,ℐ ′ respectively.

Abstract ordering. Ordering in the decomposed abstract domain is defined as ℐ ⊑ ℐ ′ ≡ γ (ℐ) ⊆
γ (ℐ ′).

Precision of decomposed transformers. We define classes of conditional, assignment, meet, join
and widening transformers for which the outputs of both the given non-decomposed T and our
associated decomposed T d have the same concretization, i.e., γ (T (ℐ)) ≙ γ (T d(ℐ)) for all ℐ in 𝒟,
which implies that T d inherits monotonicity from T . If the transformer is not in these classes, then
both γ (T (ℐ)) ⊂ γ (T d(ℐ)) or γ (T (ℐ)) ⊃ γ (T d(ℐ)) are possible and monotonicity may not hold.
If in addition to γ (T (ℐ)) ≙ γ (T d(ℐ)), the given transformers satisfy

γ (ℐ) ≙ γ (ℐ ′) ⇒ γ (T (ℐ)) ≙ γ (T (ℐ ′)),

then the analysis with our associated decomposed transformers produces the same semantic
invariants at fixpoint (fixpoint equivalence).

5.1 Conditional

We consider conditional statements of the form e ⊗ c where e ≙ ∑n
i≙1 aixi with ai ∈ Z,⊗ ∈ {≤,≙},

and c ∈ Q,R, on an abstract element ℐ with an associated permissible partition πℐ in domain 𝒟.
The conditional transformer computes the effect of adding the constraint e ⊗ c to ℐ . As discussed
in Section 2, most existing domains are not closed for the conditional transformer. Moreover,
computing the best transformers is expensive in these domains and thus the transformer is usually
approximated to strike a balance between precision and cost. The example below illustrates two
sound conditional transformers on the same input: the first transformer produces a decomposable
output whereas the output of the second results in the ⊺ partition.

Example 5.1. Consider

𝒳 ≙ {x1,x2,x3,x4,x5,x6},ℒ𝒳 ,Polyhedra ∶ (6,Z
6
,{≤,≙},Q),

ℐ ≙ {x1 + x2 ≤ 0,x3 + x4 ≤ 5} with πℐ ≙ πℐ ≙ {{x1,x2},{x3,x4},{x5},{x6}}.

For the conditional statement x5 + x6 ≤ 0, a best transformer T1 may return:

ℐO ≙ {x1 + x2 ≤ 0,x3 + x4 ≤ 5,x5 + x6 ≤ 0} with πℐO ≙ πℐO ≙ {{x1,x2},{x3,x4},{x5,x6}},

which is decomposable. However, another sound transformerT2 may return the non-decomposable
output:

ℐ ′O ≙ {x1 + x2 + x3 + x4 + x5 + x6 ≤ 5} with πℐ′
O
≙ πℐ′

O
≙ ⊺.

Let ℬcond ≙ {xi ⋃︀ ai ≠ 0} be the set of variables with non-zero coefficients in the constraint
∑n

i≙1 aixi ⊗ c . The block ℬ∗cond ≙ ⋃𝒳k∩ℬcond≠∅
𝒳k fuses all blocks 𝒳k ∈ πℐ that have non-empty

intersection with ℬcond.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



55:10 Gagandeep Singh, Markus Püschel, and Martin Vechev

Algorithm 1 Decomposed conditional transformer T d
cond

1: function Conditional((ℐ,πℐ), stmt,Tcond)
2: ℬ∗cond ∶≙ compute_block(stmt,πℐ)
3: ℐcond ∶≙ ℐ(ℬ

∗
cond)

4: πℐO ∶≙ {𝒜 ∈ πℐ ⋃︀ 𝒜∩ℬ
∗
cond ≙ ∅} ∪ {ℬ

∗
cond}

5: ℐrest ∶≙ ℐ(𝒳 ∖ℬ
∗
cond)

6: ℐO ∶≙ Tcond(ℐcond) ∪ ℐrest
7: return (ℐO ,πℐO )

Example 5.2. Consider 𝒳 ≙ {x1,x2,x3,x4,x5,x6} and an element ℐ in the Polyhedra domain
with πℐ ≙ {{x1,x2,x3},{x4,x5},{x6}}. For the conditional x3 + x6 ≤ 0, ℬcond ≙ {x3,x6} and
ℬ∗cond ≙ {x1,x2,x3,x6}.

Construction for conditional. Algorithm 1 shows our construction for decomposing a given
conditional transformer Tcond. Given an input element ℐ with a permissible partition πℐ in domain
𝒟, the algorithm first extracts the blockℬ∗cond based on the conditional statement and the permissible
partition πℐ as described above. The block coarsens the input partition to yield the output partition.
Finally, the original transformer is applied to the associated abstract element ℐcond; the remaining
constraints are kept as is in the result.
In Algorithm 1 the output of the decomposed transformer T d

cond on input ℐ is computed as

T d
cond(ℐ) ≙ Tcond(ℐcond) ∪ ℐrest. One can show that T d

cond is sound but we focus on also maintaining
precision and thus monotonicity. Thus, we define a class Cond(𝒟) of conditional transformers
Tcond where γ (Tcond(ℐ)) ≙ γ (T d

cond(ℐ)) (this is one of the two conditions discussed earlier that
ensure fixed point equivalence).

Definition 5.1. A (sound and monotone) transformerTcond for the conditional expression e ⊗ c is
in Cond(𝒟) iff for any element ℐ and any associated permissible partition πℐ , the output Tcond(ℐ)
satisfies:

● Tcond(ℐ) ≙ ℐ ∪ ℐ ′ ∪ ℐ ′′ where ℐ ′ contains non-redundant constraints between the variables
from ℬ∗cond only and ℐ ′′ is a set of redundant constraints between the variables in 𝒳 .
● γ (Tcond(ℐcond)) ≙ γ (ℐ ′ ∪ ℐcond).

Theorem 5.2. If Tcond ∈ Cond(𝒟), then γ (Tcond(ℐ)) ≙ γ (T d
cond(ℐ)) for all inputs ℐ in 𝒟. In

particular, T d
cond is sound and monotone.

Proof.

γ (Tcond(ℐ)) ≙ γ (ℐ ∪ ℐ
′ ∪ ℐ ′′) (by Definition 5.1)

≙ γ (ℐ ∪ ℐ ′) (ℐ ′′ is redundant)

≙ γ (ℐrest ∪ (ℐcond ∪ ℐ
′)) (as ℐ ≙ ℐrest ∪ ℐcond)

≙ γ (ℐrest) ∩γ (ℐcond ∪ ℐ
′) (γ is meet-preserving)

≙ γ (ℐrest) ∩γ (Tcond(ℐcond)) (by Definition 5.1)

≙ γ (ℐrest ∪Tcond(ℐcond)) (γ is meet-preserving)

≙ γ (T d
cond(ℐ)).

□

Note that we can strengthen the condition in Definition 5.1 by replacing ℬ∗cond with ℬcond. This
makes it independent of permissible partitions but would reduce the class Cond(𝒟).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



A Practical Construction for Decomposing Numerical Abstract Domains 55:11

In Example 5.1, T1 ∈ Cond(𝒟) whereas T2 ⇑∈ Cond(𝒟) since T2 does not keep the original
constraints. Most standard transformers used in practice satisfy the two conditions and can thus be
decomposed with our construction without losing any precision. The following example illustrates
our construction for decomposing the standard conditional transformer Tcond in the Octagon
domain.

Example 5.3. Consider

𝒳 ≙ {x1,x2,x3},ℒ𝒳 ,Octagon ∶ (3,U
2 × {0},{≤,≙},Q),

ℐ ≙ {x1 ≤ 0,x2 + x3 ≤ 0} with πℐ ≙ πℐ ≙ {{x1},{x2,x3}}.

Consider the conditional statement x3 ≤ 0 with ℬcond ≙ {x3}. Tcond adds the constraint x3 ≤ 0 to
ℐ and then applies Octagon closure on the resulting element to produce the output:

Tcond(ℐ) ≙ {x1 ≤ 0,x2 + x3 ≤ 0,x3 ≤ 0,x1 + x3 ≤ 0},

which matches Definition 5.1 with ℐ ′ ≙ {x3 ≤ 0} and ℐ ′′ ≙ {x1 + x3 ≤ 0}.
Algorithm 1 computes ℬ∗cond ≙ {x2,x3}, πO ≙ {{x1},{x2,x3}}, ℐcond ≙ {x2 + x3 ≤ 0} and

ℐrest ≙ {x1 ≤ 0}. The algorithm applies Tcond on ℐcond and keeps ℐrest untouched to produce:

T d
cond(ℐ) ≙ {x1 ≤ 0,x2 + x3 ≤ 0,x3 ≤ 0} with πO .

Since ℐ ′ ∪ ℐcond ≙ Tcond(ℐcond), Tcond satisfies the conditions for Cond(𝒟) in this case and there is
no change in precision.

Note that best transformers are not necessarily in Cond(𝒟). This is due to constraints on the
coefficient setℛ or the constant set 𝒞 in 𝒟. We provide an example of a domain 𝒟 which does not
have any best transformer in Cond(𝒟).

Example 5.4. We consider a fictive domain

𝒳 ≙ {x1,x2} and ℒ𝒳 ,𝒟 ∶ (2,Z
2
,{≤,≙},{0, 1, 1.5}).

We assume ℐ ≙ {x1 ≤ 1,x2 ≤ 1} with permissible partition {{x1},{x2}} and the conditional
x2 ≤ 0.5. In this case ℬ∗cond ≙ {x2}. Using only the constraints with variables in ℬ∗cond yields
Tcond(ℐcond) ≙ {x2 ≤ 1} as 0.5 ⇑∈ 𝒞. This means that the most precise result we can express which fits
our conditions in the definition will be semantically equivalent to ℐ . However, a best transformer
would produce an abstract element semantically equivalent to {x1 ≤ 1,x2 ≤ 1,x1 + x2 ≤ 1.5}, which
is more precise than ℐ . Thus, no best transformer is in Cond(𝒟).

The following obvious corollary provides a condition under which the output partition πℐO
computed by Algorithm 1 is finest, i.e., πℐO ≙ πℐO .

Corollary 5.3. For the conditional e ⊗ c , πℐO ≙ πℐO , if πℐ ≙ πℐ and ℐO ≙ ℐ ∪ {e ⊗ c}.

5.2 Assignment

We consider linear assignments of the form x j ∶≙ e on an abstract element ℐ with an associated
permissible partition πℐ in 𝒟 where e ∶≙ ∑n

i≙1 aixi + c with ai ∈ Z and c ∈ Q,R. An assignment is
invertible if aj ≠ 0 (for example x1 ∶≙ x1 + x2). We write ℐx j ⊆ ℐ for the subset of constraints that
contain the variable x j .
As discussed in Section 2, a number of existing domains are not closed under assignment. As

for the conditional, the best assignment transformers are usually expensive and may need to be
approximated. We provide an example, very similar to Example 5.1, that shows how approximation
can affect decomposition.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



55:12 Gagandeep Singh, Markus Püschel, and Martin Vechev

Algorithm 2 Decomposed assignment transformer T d
assign

1: function Assignment((ℐ,πℐ), stmt,Tassign)

2: ℬ∗assign ∶≙ compute_block(stmt,πℐ)

3: ℐassign ∶≙ ℐ(ℬ
∗
assign)

4: πℐO ∶≙ {𝒜 ∈ πℐ ⋃︀𝒜∩ℬ
∗
assign ≙ ∅}∪{ℬ

∗
assign}

5: ℐrest ∶≙ ℐ(𝒳 ∖ℬ
∗
assign)

6: ℐO ∶≙ Tassign(ℐassign) ∪ ℐrest
7: πℐO ∶≙ refine(πℐO )
8: return (ℐO ,πℐO )

Example 5.5. Consider

𝒳 ≙ {x1,x2,x3,x4,x5,x6},ℒ𝒳 ,Polyhedra ∶ (6,Z
6
,{≤,≙},Q),

ℐ ≙ {x1 + x2 ≙ 0,x3 + x4 ≙ 5,x5 − x3 ≙ 0} with πℐ ≙ πℐ ≙ {{x1,x2},{x3,x4,x5},{x6}}.

For the assignment x5 ∶≙ −x6, a best sound assignment transformerT1 may return the decomposable
output:

ℐO ≙ {x1 + x2 ≙ 0,x3 + x4 ≙ 5,x5 + x6 ≙ 0} with πℐO ≙ πℐO ≙ {{x1,x2},{x3,x4},{x5,x6}}.

However, another sound transformer T2 may return the non-decomposable output:

ℐ ′O ≙ {x1 + x2 + x3 + x4 + x5 + x6 ≙ 5} with πℐ′
O
≙ πℐ′

O
≙ ⊺.

Let ℬassign ≙ {xi ⋃︀ ai ≠ 0} ∪ {x j} be the set of variables affected by e ∶≙ ∑n
i≙1 aixi + c (we

also include x j ). The block ℬ
∗
assign ≙ ⋃𝒳k∩ℬassign≠∅𝒳k fuses all blocks 𝒳k ∈ πℐ having non-empty

intersection with ℬassign.

Example 5.6. Consider 𝒳 ≙ {x1,x2,x3,x4,x5,x6} and an element ℐ in the Polyhedra domain
with πℐ ≙ {{x1,x2},{x3,x4},{x5,x6}}. For the assignment x3 ∶≙ x1 + x2, ℬassign ≙ {x1,x2,x3} and
ℬ∗assign ≙ {x1,x2,x3,x4}.

We briefly explain the standard assignment transformer as background to motivate the later
definition of Assign(𝒟) (the class of assignment transformers that do not lose precision with our
decomposition).

Standard transformer: invertible assignment. The standard assignment transformer first removes
all constraints in ℐx j from ℐ . It then computes a set of constraints ℐinv by substituting, in all
constraints in ℐx j , x j with (x j −∑i≠j aixi − c)⇑aj . Finally, ℐinv may be approximated by a set ℐ ′inv
of representable constraints (in 𝒟) over the same variable set. The result is ℐO ≙ (ℐ ∖ ℐx j ) ∪ ℐ

′
inv.

Standard transformer: non-invertible assignment. For a non-invertible assignment, the transformer
also first removes ℐx j from ℐ . Next, it computes a set of constraints ℐnon-inv by projecting out x j
from all constraints in ℐx j using variable elimination [louis Imbert 1993]. Then it adds {x j − e ≙ 0}
to ℐnon-inv. Finally, ℐnon-inv may be approximated by ℐ ′non-inv to make it representable over the same
variable set. The result is ℐO ≙ (ℐ ∖ ℐx j ) ∪ ℐ

′
non-inv.

Construction for assignment. Algorithm 2 shows our construction for decomposing a given
assignment transformer Tassign. It operates analogous to the decomposed conditional transformer,
except for the partition refinement in line 7, which we explain at the end of this section. The output
of the decomposed transformer T d

assign on ℐ is T
d
assign(ℐ) ≙ Tassign(ℐassign) ∪ ℐrest. Next we define a

class Assign(𝒟) of assignment transformers Tassign where γ (Tassign(ℐ)) ≙ γ (T d
assign(ℐ)) for all ℐ .

Again, this will ensure soundness and monotonicity.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



A Practical Construction for Decomposing Numerical Abstract Domains 55:13

Definition 5.4. A (sound and monotone) assignment transformerT in𝒟 for the statement x j ∶≙ e
is in Assign(𝒟) iff for any element ℐ and any associated permissible partition πℐ in 𝒟, the output
Tassign(ℐ) satisfies the following conditions:

● Tassign(ℐ) ≙ (ℐ ∖ ℐx j ) ∪ ℐ
′ ∪ ℐ ′′ where ℐ ′ contains non-redundant constraints between the

variables from ℬ∗assign only, and ℐ
′′ is a set of redundant constraints between the variables in

𝒳 .
● γ (Tassign(ℐassign)) ≙ γ ((ℐassign ∖ ℐx j ) ∪ ℐ

′).

Theorem 5.5. If Tassign ∈ Assign(𝒟), then γ (Tassign(ℐ)) ≙ γ (T d
assign(ℐ)) for all inputs ℐ in 𝒟. In

particular, T d
assign is sound and monotone.

Proof. ℬ∗assign contains x j by definition, thus ℐ ∖ ℐx j ≙ ℐrest ∪ (ℐassign ∖ ℐx j ). We have,

γ (Tassign(ℐ)) ≙ γ ((ℐ ∖ ℐx j ) ∪ ℐ
′ ∪ ℐ ′′) (by Definition 5.4)

≙ γ ((ℐ ∖ ℐx j ) ∪ ℐ
′) (ℐ ′′ is redundant)

≙ γ (ℐrest ∪ (ℐassign ∖ ℐx j ) ∪ ℐ
′) (from above)

≙ γ (ℐrest) ∩γ ((ℐassign ∖ ℐx j ) ∪ ℐ
′) (γ is meet-preserving)

≙ γ (ℐrest) ∩γ (Tassign(ℐassign)) (by Definition 5.4)

≙ γ (ℐrest ∪Tassign(ℐassign)) (γ is meet-preserving)

≙ γ (T d
assign(ℐ))

□

As for Cond(𝒟), Definition 5.4 can be tightened to make it independent of permissible partitions
at the price of a smaller Assign(𝒟).
In Example 5.5, T1 ∈ Assign(𝒟) whereas T2 ⇑∈ Assign(𝒟) as T2 does not keep the constraints in

ℐ ∖ℐx5 . Most standard assignment transformers used in practice satisfy the two conditions and can
thus be decomposed with our construction without losing any precision. The following example
illustrates our construction for decomposing the standard assignment transformer Tassign in the
TVPI domain.

Example 5.7. Consider

𝒳 ≙ {x1,x2,x3},ℒ𝒳 ,TVPI ∶ (3,Z
2 × {0},{≤,≙},Q),

ℐ ≙ {x1 ≤ 0,x2 + x3 ≤ 0,x3 ≤ 3} with πℐ ≙ πℐ ≙ {{x1},{x2,x3}}.

Consider the non-invertible assignment x2 ∶≙ 2x3 with ℬassign ≙ {x2,x3}. Tassign determines that
ℐx2 ≙ {x2 +x3 ≤ 0}, projects out x2, which yields the empty set, and then adds x2 − 2x3 ≙ 0 to obtain
ℐnon-inv, which is representable. Overall this results in {x1 ≤ 0,x2 − 2x3 ≙ 0,x3 ≤ 3}.
Next, the transformer applies TVPI completion to produce the final output:

Tassign(ℐ) ≙ {x1 ≤ 0,x2 − 2x3 ≙ 0,x3 ≤ 3,x2 ≤ 6,x1 + x2 ≤ 6,x1 + x3 ≤ 3,x2 + x3 ≤ 9},

which has the form of Definition 5.4 with

ℐ
′ ≙ {x2 − 2x3 ≙ 0} and ℐ

′′ ≙ {x2 ≤ 6,x1 + x2 ≤ 6,x1 + x3 ≤ 3,x2 + x3 ≤ 9}.

Algorithm 2 computes ℬ∗assign ≙ {x2,x3}, ℐassign ≙ {x2 + x3 ≤ 0,x3 ≤ 3}, πℐO ≙ {{x1},{x2,x3}},
and ℐrest ≙ {x1 ≤ 0}. The algorithm applies Tassign on ℐassign and keeps ℐrest untouched to produce:

ℐO ≙ T
d
assign(ℐ) ≙ {x1 ≤ 0,x2 − 2x3 ≙ 0,x3 ≤ 3,x2 ≤ 6,x2 + x3 ≤ 9} with πℐO .

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



55:14 Gagandeep Singh, Markus Püschel, and Martin Vechev

Here ℐ ′ contains non-redundant constraints between variables from ℬ∗assign only and we have

γ ((ℐassign ∖ ℐx j ) ∪ ℐ
′) ≙ γ ({x2 − 2x3 ≙ 0,x2 ≤ 3}) ≙ γ (Tassign(ℐassign)). Thus Tassign satisfies the

conditions for Assign(𝒟) in this case and there is no loss of precision.

Refinement. So far we have assumed that line 7 of Algorithm 2 is the identity (that is, refinement
does not affect πℐO ). We now discuss refinement in more detail.

Definition 5.6 (Refinement condition). The output partition πℐO of a non-invertible assignment
transformerTassign satisfying Definition 5.4 is a candidate for refinement if𝒳t ∩ ℬassign ≙ {x j}where
𝒳t is the block of πℐ containing x j . Here, ℐ is the abstract element upon which the transformer is
applied and πℐ is a permissible partition.

If the above condition holds during analysis (it can be checked efficiently), then refinement can
split ℬ∗assign from πℐO into two blocks 𝒳t ∖ {x j} and ℬ∗assign ∖ (𝒳t ∖ {x j}), provided no redundant

constraint (ℐ ′′ in Definition 5.4) fuses these two blocks. The result is a finer partition πℐO .

Example 5.8. Consider

𝒳 ≙ {x1,x2,x3,x4,x5},ℒ𝒳 ,Zones ∶ (5,{1, 0} × {0,−1} × {0}
3
,{≤,≙},Q),

ℐ ≙ {x1 ≤ x2,x2 ≤ x3,x4 ≤ x5} with πℐ ≙ πℐ ≙ {{x1,x2,x3},{x4,x5}}.

Consider the non-invertible assignment x2 ∶≙ x4 with ℬassign ≙ {x2,x4} and the standard Zones
assignment transformer Tassign. Without refinement, we obtain the partition πℐO ≙ {𝒳} ≙ ⊺.
However, our refinement condition enables us to obtain a finer output partition. We have that
𝒳t ≙ {x1,x2,x3} and𝒳t∩ℬassign ≙ {x2} and thus the dynamic refinement condition applies, splitting
the block ℬ∗assign ≙ 𝒳 into two blocks: 𝒳t ∖ {x2} ≙ {x1,x3} and ℬ∗assign ∖ (𝒳t ∖ {x2}) ≙ {x2,x4,x5}.
This produces a finer partition for the output:

ℐO ≙ {x1 ≤ x3,x2 − x4 ≙ 0,x4 ≤ x5,x2 ≤ x5} with πℐO ≙ πℐO ≙ {{x1,x3},{x2,x4,x5}}.

As with the conditional, πℐO ≠ πℐO in general even if πℐ ≙ πℐ . The following corollary provides
conditions under which πℐO ≙ πℐO after applying Algorithm 2.

Corollary 5.7. For the assignment x j ∶≙ e , πℐO ≙ πℐO holds if πℐ ≙ πℐ and, in the invertible case

ℐO ≙ (ℐ ∖ ℐx j ) ∪ ℐinv or, in the non-invertible case ℐO ≙ (ℐ ∖ ℐx j ) ∪ ℐnon-inv.

5.3 Meet (⊓)

As discussed in Section 2, all domains we consider are closed under the meet (⊓) and thus it is
common to implement a precise transformer. In fact, anymeet transformerT⊓ that obeysT⊓(ℐ,ℐ ′) ⊑
ℐ,ℐ ′ is precise. Thus, we assume a given precise meet transformer, i.e., γ (T⊓(ℐ,ℐ ′)) ≙ γ (ℐ)∩γ (ℐ ′)
for all ℐ,ℐ ′. As a consequence, our decomposed construction will always yield an equivalent
transformer, without any conditions.

Construction for meet (⊓). Algorithm 3 shows our construction of a decomposed transformer for
a given meet transformer T⊓ on input elements ℐ,ℐ ′ with the respective permissible partitions
πℐ ,πℐ′ in domain 𝒟. The algorithm computes a common permissible partition πℐ ⊔ πℐ′ for the
inputs and then applies T⊓ separately on the individual factors of ℐ,ℐ ′ corresponding to the blocks
in πℐ ⊔ πℐ′ .

Theorem 5.8. γ (T⊓(ℐ,ℐ ′)) ≙ γ (T d
⊓ (ℐ,ℐ

′)) for all inputs ℐ,ℐ ′ in 𝒟. In particular, T d
⊓ is sound

and monotone.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



A Practical Construction for Decomposing Numerical Abstract Domains 55:15

Algorithm 3 Decomposed meet transformer T d
⊓

1: functionMeet((ℐ,πℐ), (ℐ
′
,πℐ′),T⊓)

2: πℐO ∶≙ πℐ ⊔ πℐ′

3: ℐO ∶≙ ⋃
𝒜∈πIO

T⊓(ℐ(𝒜),ℐ
′(𝒜))

4: return (ℐO ,πℐO )

Proof.

γ (T⊓(ℐ,ℐ ′)) ≙ γ (ℐ) ∩γ (ℐ ′)

≙ ⋂
𝒜

γ (ℐ(𝒜)) ∩γ (ℐ ′(𝒜)) (ℐ ≙ ⋃ℐ(𝒜), ℐ ′ ≙ ⋃ℐ ′(𝒜))

≙ ⋂
𝒜

γ (T⊓(ℐ(𝒜),ℐ ′(𝒜))) (T⊓ is precise)

≙ γ (⋃
𝒜

T⊓(ℐ(𝒜),ℐ ′(𝒜))) (γ is meet-preserving)

≙ γ (T d
⊓ (ℐ,ℐ

′))

□

The following example illustrates the decomposition of a best meet transformer T⊓ in the
Octahedron domain using Algorithm 3.

Example 5.9. Consider

𝒳 ≙ {x1,x2,x3,x4},ℒ𝒳 ,Octahedron ≙ (4,U
4
,{≤,≙},Q),

ℐ ≙ {x1 ≤ 1,x2 ≤ 0,x3 + x4 ≤ 1} with πℐ ≙ πℐ ≙ {{x1},{x2},{x3,x4}} and

ℐ
′ ≙ {x1 − x3 − x4 ≤ 2,x2 ≤ 1} with πℐ′ ≙ πℐ′ ≙ {{x1,x3,x4},{x2}}.

T⊓ computes the union ℐ ∪ ℐ ′ and then removes redundant constraints to produce the output:

T⊓(ℐ,ℐ ′) ≙ {x1 ≤ 1,x2 ≤ 0,x3 + x4 ≤ 1,x1 − x3 − x4 ≤ 2}.

Algorithm 3 computes the common permissible partition πℐ ⊔ πℐ′ ≙ {{x1,x3,x4},{x2}} and
applies T⊓ separately on the factors of ℐ,ℐ ′ corresponding to the common partition and produces:

T d
⊓ (ℐ,ℐ

′) ≙ {x1 ≤ 1,x2 ≤ 0,x3 + x4 ≤ 1,x1 − x3 − x4 ≤ 2}

with πℐO ≙ {{x1,x3,x4},{x2}}.

The following corollary provides conditions under which the output partition is finest.

Corollary 5.9. πℐO ≙ πℐO if πℐ ≙ πℐ , πℐ′ ≙ πℐ′ , and ℐO ≙ ℐ ∪ ℐ ′.

5.4 Join (⊔)

As discussed in Section 2, none of the sub-polyhedra domains we consider are closed for the join
(⊔). Thus, the join transformer approximates the union of ℐ and ℐ ′ in 𝒟 and is usually the most
expensive transformer in 𝒟. As with other transformers, an arbitrary approximation can result in
the ⊺ partition. The example below shows this situation with two sound join transformers in the
Zones domain.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



55:16 Gagandeep Singh, Markus Püschel, and Martin Vechev

Algorithm 4 Decomposed join transformer T d
⊔

1: function Join((ℐ,πℐ), (ℐ
′
,πℐ′),T⊔)

2: π common ∶≙ πℐ ⊔ πℐ′
3: 𝒩 ≙⋃{𝒜 ∈ π common ⋃︀ ℐ(𝒜) ≠ ℐ

′(𝒜)}
4: ℐ⊔ ∶≙ ℐ(𝒩 )
5: ℐ′⊔ ∶≙ ℐ

′(𝒩 )

6: ℐrest ∶≙ ℐ(𝒳 ∖𝒩 )
7: πℐO ∶≙ {𝒜 ∈ π common ⋃︀ 𝒜∩𝒩 ≙ ∅} ∪ {𝒩}
8: ℐO ∶≙ T⊔(ℐ⊔,ℐ

′
⊔) ∪ ℐrest

9: πℐO ∶≙ refine(πℐO )
10: return (ℐO ,πℐO )

Example 5.10. Consider

𝒳 ≙ {x1,x2,x3,x4,x5,x6},ℒ𝒳 ,Zones ∶ (6,{1, 0} × {0,−1} × {0}
4
,{≤,≙},R),

ℐ ≙ {x1 ≙ 1,x2 ≙ 2,x3 ≤ 3,x4 ≙ 4,x5 ≙ 0,x6 ≙ 0} and

ℐ ′ ≙ {x1 ≙ 1,x2 ≙ 2,x3 ≤ 3,x4 ≙ 4,x5 ≙ 1,x6 ≙ 1} with

πℐ ≙ πℐ′ ≙ πℐ ≙ �.

A sound transformer T1 may return the decomposed output:

ℐO ≙ {x1 ≙ 1,x2 ≙ 2,x3 ≤ 3,x4 ≙ 4,−x5 ≤ 0,x5 ≤ 1,−x6 ≤ 0,x6 ≤ 1} with πℐO ≙ πℐO ≙ �.

Another sound transformer T2 for the join could produce the output ℐ ′O with the ⊺ partition:

ℐ ′O ≙ {x2 − x1 ≤ 1,x1 − x5 ≤ 1,x3 − x2 ≤ 1,x3 − x4 ≤ −1,x5 − x6 ≙ 0} with πℐ′
O
≙ πℐ′

O
≙ ⊺.

Let π common ∶≙ πℐ ⊔ πℐ′ and 𝒩 ≙ ⋃{𝒜 ∈ π common ⋃︀ ℐ(𝒜) ≠ ℐ
′(𝒜)} be the union of all blocks

for which the corresponding factors ℐ(𝒜) and ℐ ′(𝒜) are not semantically equal. In Example 5.10,
we have 𝒩 ≙ {x5,x6}.

Construction for ⊔. Algorithm 4 shows our construction of a decomposed join transformer for
a given T⊔ on input elements ℐ,ℐ ′ with the respective permissible partitions πℐ ,πℐ′ in domain
𝒟. The algorithm first computes a common permissible partition π common ≙ πℐ ⊔ πℐ′ . For each
block 𝒜 ∈ π common, it checks if the corresponding factors ℐ(𝒜),ℐ ′(𝒜) are (semantically) equal. If
equality holds, the algorithm adds ℐ(𝒜) to the output ℐO and adds the corresponding block 𝒜 to
the partition πℐO . Those not equal are collected in the bigger factors ℐ⊔,ℐ ′⊔ on whichT⊔ is applied,
which reduces complexity. The associated block in πℐO is 𝒩 . The possible partition refinement is
explained at the end of this section.
In Algorithm 4 the output of the decomposed transformer T d

⊔ on inputs ℐ,ℐ ′ is computed as
T d
⊔ (ℐ,ℐ

′) ≙ T⊔(ℐ⊔,ℐ ′⊔) ∪ ℐrest. Next we define a class Join(𝒟) of join transformers T⊔ for which
γ (T⊔(ℐ,ℐ ′)) ≙ γ (T d

⊔ (ℐ,ℐ
′)) for all inputs ℐ,ℐ ′ in 𝒟. This ensures soundness and monotonicity.

Definition 5.10. A join transformer T⊔ is in Join(𝒟) iff for all pairs of input elements ℐ,ℐ ′ and
all associated common permissible partitions π common, the output T⊔(ℐ,ℐ ′) satisfies the following
conditions:

● T⊔(ℐ,ℐ ′) ≙ ℐrest ∪𝒥 ′ ∪𝒥 ′′ where ℐrest ≙ ℐ(𝒳 ∖𝒩 ), 𝒥 ′ contains non-redundant constraints
between only the variables from 𝒩 and 𝒥 ′′ contains redundant constraints between the
variables in 𝒳 .
● γ (T⊔(ℐ⊔,ℐ ′⊔)) ≙ γ (𝒥

′).

Theorem 5.11. If T⊔ ∈ Join(𝒟), then γ (T⊔(ℐ,ℐ ′)) ≙ γ (T d
⊔ (ℐ,ℐ

′)) for all inputs ℐ,ℐ ′ in 𝒟. In
particular, T d

⊔ is sound and monotone.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



A Practical Construction for Decomposing Numerical Abstract Domains 55:17

Proof.

γ (T⊔(ℐ,ℐ
′)) ≙ γ (ℐrest ∪ 𝒥

′ ∪ 𝒥 ′′) (by Definition 5.10)

≙ γ (ℐrest ∪ 𝒥
′) (𝒥 ′′ is redundant)

≙ γ (ℐrest) ∩γ (𝒥
′) (γ is meet-preserving)

≙ γ (ℐrest) ∩γ (T⊔(ℐ⊔,ℐ
′
⊔)) (by Definition 5.10)

≙ γ (ℐrest ∪T⊔(ℐ⊔,ℐ
′
⊔)) (γ is meet-preserving)

≙ γ (T d
⊔ (ℐ,ℐ

′))

□

The join transformer T1 in Example 5.10 is in Join(𝒟) whereas T2 is not in Join(𝒟) as it does
not keep the constraints in ℐrest. Most standard and best join transformers in practice satisfy the
conditions for Join(𝒟) and thus they are decomposable with our construction without any change
in precision.

The following example illustrates the decomposition of a best join transformerT⊔ in the Octagon
domain using Algorithm 4.

Example 5.11. Consider

𝒳 ≙ {x1,x2,x3},ℒ𝒳 ,Octagon ∶ (3,U
2 × {0},{≤,≙},R),

ℐ ≙ {x1 ≤ 2,x2 ≤ 1,x3 ≤ 3},ℐ
′ ≙ {x1 ≤ 1,x2 ≤ 3,x3 ≤ 3} with

πℐ ≙ πℐ′ ≙ πℐ ≙ �.

T⊔ performs strong closure on both ℐ,ℐ ′ to produce:

ℐ∗ ≙ {x1 ≤ 2,x2 ≤ 1,x3 ≤ 3,x1 + x2 ≤ 3,x1 + x3 ≤ 5,x2 + x3 ≤ 4}

ℐ ′
∗
≙ {x1 ≤ 1,x2 ≤ 3,x3 ≤ 3,x1 + x2 ≤ 4,x1 + x3 ≤ 4,x2 + x3 ≤ 6}.

It then takes the pairwise maximum of bounds for each constraint to produce the output:

T⊔(ℐ,ℐ
′) ≙ {x1 ≤ 2,x2 ≤ 3,x3 ≤ 3,x1 + x2 ≤ 4,x1 + x3 ≤ 5,x2 + x3 ≤ 6}.

which matches Definition 5.10 with

ℐrest ≙ {x3 ≤ 3},𝒥
′ ≙ {x1 ≤ 2,x2 ≤ 3,x1 + x2 ≤ 4}, and 𝒥

′′ ≙ {x1 + x3 ≤ 5,x2 + x3 ≤ 6}.

Since πℐ ≙ πℐ′ , we have π common ≙ πℐ . Here ℐ1 ≠ ℐ ′1, ℐ2 ≠ ℐ
′
2 and ℐ3 ≙ ℐ

′
3. Algorithm 4 computes

𝒩 ≙ {x1,x2} and combines ℐ1,ℐ2 into a single factor ℐ⊔. Similarly, it combines ℐ ′1,ℐ
′
2 into ℐ

′
⊔.

ℐ⊔ ≙ {x1 ≤ 2,x2 ≤ 1},ℐ
′
⊔ ≙ {x1 ≤ 1,x2 ≤ 3}.

The algorithm applies T⊔ only on ℐ⊔,ℐ ′⊔ whereas ℐ3 is added to the output directly:

ℐO ≙ T
d
⊔ (ℐ,ℐ

′) ≙ {x1 ≤ 2,x2 ≤ 3,x1 + x2 ≤ 4,x3 ≤ 3} with πℐO ≙ πℐO ≙ {{x1,x2},{x3}}.

In the example, ℐrest contains non-redundant constraints only between the variables from 𝒳 ∖𝒩 ,
𝒥 ′ contains non-redundant constraints between only the variables from 𝒩 and γ (T⊔(ℐ⊔,ℐ ′⊔)) ≙
{x1 ≤ 2,x2 ≤ 3,x1 + x2 ≤ 4} ≙ γ (𝒥 ′), and thus T⊔ satisfies the conditions for Join(𝒟) in this case.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



55:18 Gagandeep Singh, Markus Püschel, and Martin Vechev

Refinement. We can sometimes refine the output partition πℐO after computing the output ℐO
without inspecting or modifying ℐO . Namely, if a variable xi is unconstrained in either ℐ or ℐ ′, then
it is also unconstrained in ℐO . πℐO can thus be refined by removing xi from the block containing it
and adding the singleton set {xi} to πℐO . This refinement can be performed after applyingT d

⊔ . The
following theorem formalizes this refinement.

Theorem 5.12. Let ℐ,ℐ ′ be abstract elements in𝒟 with the associated permissible partitions πℐ ,πℐ′

respectively. Let 𝒰 ≙ {x ∈ 𝒳 ⋃︀ x is unconstrained in ℐ or ℐ ′} ≙ {u1, . . . ,ur} and let πℐO as computed

in line 7 of Algorithm 4. Then the following partition is permissible for the output ℐO :

πℐO ⊓ {𝒳 ∖ 𝒰 ,{u1},⋯,{ur}}.

The proof of Theorem 5.12 is immediate from the discussion above. Unlike other transformers,
we do not know of conditions for checking whether πℐO ≙ πℐO .

5.5 Widening (▽)

The widening transformer T▽ is applied during analysis to accelerate convergence towards a
fixpoint. It is a binary transformer that guarantees: (i) the output satisfies T▽(ℐ,ℐ ′) ⊒ ℐ,ℐ ′, and
(ii) the analysis terminates after a finite number of steps. In general, widening transformers are not
monotonic or commutative. Further, best widening transformers do not exist for any numerical
domain. In theory, it may be possible to design arbitrary widening transformers that always result
in the ⊺ partition. In practice, the standard widening transformers are of two types:

Syntactic. For syntactic widening [Miné 2002, 2006], the output satisfies ℐO ⊆ ℐ . A constraint
ι ∶≙ ∑n

i≙1 aixi ≤ c ∈ ℐ is in the output ℐO iff there is a constraint ι′ ∶≙ ∑n
i≙1 aixi ≤ c

′ ∈ ℐ ′ with the
same linear expression and c′ ≤ c .

Semantic. The semantic widening [Cousot et al. 2005] requires the set of constraints in the input
ℐ to be non-redundant. The output satisfies ℐO ⊆ ℐ ∪ ℐ ′. Specifically, ℐO contains the constraints
from ℐ that are satisfied by ℐ ′ and the constraints ι′ from ℐ ′ that are mutually redundant with a
constraint ι in ℐ .
Both these transformers are decomposable in practice. The following example illustrates the

semantic and the syntactic widening on the Octagon domain.

Example 5.12. Consider

𝒳 ≙ {x1,x2,x3,x4},ℒ𝒳 ,Octagon ∶ (4,U
2
× {0}2,{≤,≙},Q),

ℐ ≙ {x1 − x2 ≙ 0,x2 ≙ 0,x3 ≤ 0,x4 ≤ 1} with πℐ ≙ πℐ ≙ {{x1,x2},{x3},{x4}} and

ℐ ′ ≙ {x1 ≙ 0,x3 + x4 ≤ 2} with πℐ′ ≙ πℐ′ ≙ {{x1},{x2},{x3,x4}}.

The semantic widening transformer T1 yields:

ℐO ≙ {x1 ≙ 0} with πℐO ≙ πℐO ≙ �.

On the other hand, the syntactic widening transformer T2 yields:

ℐ ′O ≙ ∅ with πℐ′
O
≙ πℐ′

O
≙ �.

Thus, both are decomposable in this case.

Construction for widening. Algorithm 5 shows our construction of a decomposed widening
transformer on input elements ℐ,ℐ ′ with respective permissible partitions πℐ ,πℐ′ in 𝒟. The
algorithm computes a common permissible partition πℐ ⊔ πℐ′ and then applies the widening
transformerT▽ separately on the individual factors of ℐ,ℐ ′ corresponding to the blocks of πℐ ⊔πℐ′ .
The refinement of the out partition is explained at the end of this section.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



A Practical Construction for Decomposing Numerical Abstract Domains 55:19

Algorithm 5 Decomposed widening transformer T d
▽

1: functionWidening((ℐ,πℐ), (ℐ
′
,πℐ′),T▽)

2: πℐO ∶≙ πℐ ⊔ πℐ′

3: ℐO ∶≙ ⋃
𝒜∈πIO

T▽(ℐ(𝒜),ℐ
′(𝒜))

4: πℐO ∶≙ refine(πℐO )
5: return (ℐO ,πℐO )

Next, we define a class Widen(𝒟) of widening transformers T▽ for which γ (T▽(ℐ,ℐ ′)) ≙
γ (T d

▽(ℐ,ℐ
′)) for all inputs ℐ,ℐ ′ in 𝒟.

Definition 5.13. A widening transformer T▽ is in Widen(𝒟) iff for all pairs of input elements
ℐ,ℐ ′ and all associated common permissible partitions π common, the output T▽(ℐ,ℐ ′) satisfies:

γ (T▽(ℐ,ℐ
′)) ≙ ⋂

𝒜

γ (T▽(ℐ(𝒜),ℐ
′(𝒜))).

Theorem 5.14. If T▽ ∈ Widen(𝒟), then γ (T▽(ℐ,ℐ ′)) ≙ γ (T d
▽(ℐ,ℐ

′)) for all inputs ℐ,ℐ ′ in 𝒟.
Thus, T d

▽ is sound.

Proof.
γ (T▽(ℐ,ℐ

′)) ≙ ⋂
𝒜

γ (T▽(ℐ(𝒜),ℐ
′(𝒜))) (by Definition 5.13)

≙ γ (⋃
𝒜

T▽(ℐ(𝒜),ℐ
′(𝒜)) (γ is meet-preserving)

≙ γ (T d
▽(ℐ,ℐ

′))
□

Both syntactic and semantic Octagon widening transformers from Example 5.12 are inWiden(𝒟).
It can be shown that the standard transformers in existing domains are in Widen(𝒟). For syntactic
widening,γ (ℐ) ≙ γ (ℐ ′) does not implyγ (T▽(ℐ ′′,ℐ)) ≙ γ (T▽(ℐ ′′,ℐ ′)) in general, and thus fixpoint
equivalence is not guaranteed with the decomposed transformer. The following example illustrates
the decomposition of the standard semantic TVPI widening transformer T▽ using Algorithm 5.

Example 5.13. Consider

𝒳 ≙ {x1,x2,x3,x4},ℒ𝒳 ,TVPI ≙ (Z
2 × {0}2,{≤,≙},Q),

ℐ ≙ {x1 ≙ 1,x2 ≙ 0,x3 + x4 ≤ 1}, with πℐ ≙ {{x1},{x2},{x3,x4}} and

ℐ ′ ≙ {2x1 − 3x2 ≤ 2,x1 + x2 ≙ 1,x3 ≤ 0,x4 ≤ 0} with πℐ′ ≙ {{x1,x2},{x3},{x4}}.

T▽ keeps the constraint x3 + x4 ≤ 1 from ℐ as it is satisfied by ℐ ′ (using x3 ≤ 0,x4 ≤ 0). It also adds
the constraint x1 + x2 ≙ 1 from ℐ ′ to the output as it is mutually redundant with the constraint
x1 ≙ 1 in ℐ . The output of T▽ is:

T▽(ℐ,ℐ
′) ≙ {x1 + x2 ≙ 1,x3 + x4 ≤ 1}.

Algorithm 5 computes the common permissible partition ℐO ≙ πℐ ⊔ πℐ′ ≙ {{x1,x2},{x3,x4}}
and then computes the output ℐO by applying T▽ separately on the individual factors of ℐ,ℐ ′

corresponding to the blocks of π common:

ℐO ≙ T
d
▽(ℐ,ℐ

′) ≙ {x1 + x2 ≤ 1,x3 + x4 ≤ 1} with πℐO ≙ {{x1,x2},{x3,x4}}.

Here γ (T▽(ℐ,ℐ ′)) ≙ ⋂
𝒜

γ (T▽(ℐ(𝒜),ℐ
′(𝒜))) and thus T▽ is in Widen(𝒟).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



55:20 Gagandeep Singh, Markus Püschel, and Martin Vechev

Refinement. T▽ in Algorithm 5 does not create constraints between variables in different blocks
of the common partition in the output ℐO . By construction πℐO ≙ π common ≙ πℐ ⊔πℐ′ . For syntactic
widening, ℐO ⊆ ℐ and thus the output partition πℐO can be refined to πℐ after computing the
output ℐO .

The following corollaries provide conditions when πℐO ≙ πℐO for the semantic and the syntactic
widening respectively.

Corollary 5.15. For semantic widening, πℐO ≙ πℐO if πℐ ≙ πℐ , πℐ′ ≙ πℐ′ and ℐO ≙ ℐ ∪ ℐ ′.

Corollary 5.16. For syntactic widening, πℐO ≙ πℐO if πℐ ≙ πℐ and ℐO ≙ ℐ .

6 EXPERIMENTAL EVALUATION

In this section we evaluate the performance of our generic decomposition approach on three popular
domains: Polyhedra, Octagon, and Zones. Using standard implementations of these domains, we
show that our decomposition of their transformers leads to substantial performance improvements,
often surpassing existing transformers designed for specific domains.
Our decomposed implementation for these domains is available as part (i.e., an update) of the

ELINA library [eli]. Below, we compare to the prior ELINA as described in [Singh et al. 2015, 2017].

Experimental setup. All of our experiments were performed on a 3.5 GHz Intel Quad Core i7-4771
Haswell CPU. The machine has L1, L2, and L3 caches of sizes 256 KB, 1024 KB, and 8192 KB,
respectively, and 16 GB of main memory. Turbo boost and hyper threading were disabled for
consistency of measurements. All libraries were compiled with gcc 5.2.1 using the flags -O3 -m64

-march=native. We used a time limit of four hours for our experiments.

Benchmarks. The benchmarks were taken from the popular software verification competition
[Beyer 2016]. The benchmark suite is divided into categories suited for different kinds of analyses,
e.g., pointer, array, numerical, and others. We chose two categories suited for numerical analysis: (i)
Linux Device Drivers (LD), and (ii) Control Flow (CF). Each of these categories contains hundreds
of benchmarks and we evaluated the performance of our analysis on each of these. We use the
crab-llvm analyzer which is part of the SeaHorn verification framework [Gurfinkel et al. 2015] for
performing the analysis. The analyzer is written in C++ and performs intraprocedural analysis
of LLVM bitcode. The analyzer explicitly checks for unconstrained variables during runtime and
removes them. Thus, the total number of variables for Polyhedra, Octagon, and Zones can be
different on the same benchmark.

6.1 Polyhedra

The standard implementation of the Polyhedra domain is based on the double representation
method, i.e., it maintains both the constraints and the generator representation. This is because
transformers such as meet are cheap with the constraint representation but expensive with the
generator representation. On the other hand transformers such as join are cheap with the generator
representation but expensive with the constraint representation. The Polyhedra analysis thus
applies the domain transformer on one representation and then updates the other representation
using a standard conversion algorithm [Chernikova 1968; Verge 1994]. The standard implementation
contains the best conditional, assignment, meet, and join transformers together with a semantic
widening transformer. All these transformers are in the classes of decomposable transformers
defined in Section 5.

Table 2 shows the asymptotic complexity of Polyhedra transformers in the standard implemen-
tation with and without decomposition [Singh et al. 2017]. For the non-decomposed column in
the table, n is the number of variables, m is the number of constraints, and д is the number of

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



A Practical Construction for Decomposing Numerical Abstract Domains 55:21

Table 2. Asymptotic time complexity of the Polyhedra transformers with and without decomposition.

Transformer Non-Decomposed Decomposed

Conditional O(n) O(nmax)
Assignment O(nд) O(nmaxдmax)
Meet (⊓) O(nm) O(∑r

i≙1 nimi)
Join (⊔) O(nд) O(∑r

i≙1 niдimi + nmaxдmax)
Widening (∇) O(nдm) O(∑r

i≙1 niдimi)
Conversion O(exp(n,д)) O(∑r

i≙1 exp(ni ,дi))

generators. In the decomposed column, r is the number of blocks in the partition, ni is the number
of variables in the ith block, nmax is the number of variables in the largest block,mi and дi are
the number of constraints and generators, respectively, in the ith factor and дmax is the number of
generators in the largest factor. It holds that n ≙ ∑r

i≙1 ni ,m ≙ ∑
r
i≙1mi and д ≙∏

r
i≙1дi . We also show

the complexity of the conversion algorithm for converting from the constraints to the generators. It
has the same exponential complexity (in terms of n and д) for conversion in either direction. Thus,
it is the most expensive operation in the standard implementation.
We compare the runtime and memory consumption for end-to-end Polyhedra analysis with

our generic decomposed transformers versus the original non-decomposed transformers from the
Parma Polyhedra Library (PPL) [Bagnara et al. 2008] and the decomposed transformers from ELINA
[Singh et al. 2017]. PPL, ELINA, and our implementation store the constraints and the generators
using matrices with 64-bit integers. PPL stores a single matrix for either representation whereas
both ELINA and our implementation use a set of matrices corresponding to the factors, which
requires exponential space in the worst case.

Table 3 shows the results on 13 large, representative benchmarks. These benchmarks were chosen
based on the following criteria:

● The most time consuming function in the benchmark did not produce any integer overflow
with ELINA or our approach.
● The benchmark ran for at least 2 minutes with PPL.

Our decomposition maintains semantic equivalence with both ELINA and PPL as long as there is
no integer overflow and thus gets the same semantic invariants. All three implementations set the
abstract element to ⊺ when an integer overflow occurs. The total number of integer overflows on
the chosen benchmarks were 58, 23 and 21 for PPL, ELINA, and our decomposition, respectively.
We also had fewer integer overflows than both ELINA and PPL on the remaining benchmarks.
Thus, our decomposition improves in some cases also the precision of the analysis with respect to
both ELINA and PPL.
Table 3 shows our experimental findings. The entryMO (memory-out) in the table means that

the analysis ran out of memory whereas the entry TO (time-out) means the analysis did not finish
within four hours. Whenever there is memory overflow and our analysis finishes, we show the
corresponding speedup as∞, because the analysis can never finish on the given machine even if
given arbitrary time. The speedups in case of a time-out are lower bounds obtained by assuming
optimistically that PPL had finished right after four hours.

In the table, PPL either ran out of memory or did not finish within four hours on 8 out of the 13
benchmarks. Both ELINA and our decomposition are able to analyze all benchmarks. We are faster
than ELINA on all benchmarks with a maximum speedup of 5.9x on the P19_l59 benchmark. We
also save significant memory over ELINA. The speedups on the remaining (not shown) benchmarks
over the decomposed version of ELINA varies from 1.1x to 4x with an average of about 1.4x..

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



55:22 Gagandeep Singh, Markus Püschel, and Martin Vechev

Table 3. Speedup for the Polyhedra domain analysis with our decomposition over PPL and ELINA.

Benchmark PPL ELINA Our Decomposition Speedup vs.

time(s) memory(GB) time(s) memory(GB) time(s) memory(GB) PPL ELINA

firewire_firedtv 331 0.9 0.4 0.2 0.2 0.2 1527 2
net_fddi_skfp 6142 7.2 9.2 0.9 4.4 0.3 1386 2
mtd_ubi MO MO 4 0.9 1.9 0.3 ∞ 2.1
usb_core_main0 4003 1.4 65 2 29 0.7 136 2.2
tty_synclinkmp MO MO 3.4 0.1 2.5 0.1 ∞ 1.4
scsi_advansys TO TO 4 0.4 3.4 0.2 >4183 1.2
staging_vt6656 TO TO 2 0.4 0.5 0.1 >28800 4
net_ppp 10530 0.1 924 0.3 891 0.1 11.8 1
p10_l00 121 0.9 11 0.8 5.4 0.2 22.4 2
p16_l40 MO MO 11 3 2.9 0.4 ∞ 3.8
p12_l57 MO MO 14 0.8 6.5 0.3 ∞ 2.1
p13_l53 MO MO 54 2.7 25 0.9 ∞ 2.2
p19_l59 MO MO 70 1.7 12 0.6 ∞ 5.9

Table 4. Partition statistics for the Polyhedra domain analysis.

Benchmark Category LOC n nelinamax nourmax nfinestmax

max avg max avg max avg max avg

firewire_firedtv LD 14506 159 25 81 7 40 4 39 3
net_fddi_skfp LD 30186 589 88 111 25 45 9 13 4
mtd_ubi LD 39334 528 59 111 14 28 5 23 4
usb_core_main0 LD 52152 365 72 267 30 60 11 40 7
tty_synclinkmp LD 19288 332 49 48 10 40 6 26 4
scsi_advansys LD 21538 282 63 117 18 49 12 41 9
staging_vt6656 LD 25340 675 53 204 17 25 4 12 3
net_ppp LD 15744 218 58 112 40 51 28 43 20
p10_l00 CF 592 303 174 234 54 79 16 14 6
p16_l40 CF 1783 874 266 86 31 39 14 5 3
p12_l57 CF 4828 921 261 461 78 21 7 4 3
p13_l53 CF 5816 1631 342 617 111 26 10 9 3
p19_l59 CF 9794 1272 358 867 187 31 8 12 3

Better partitioning leads to performance improvements. Table 4 shows further statistics about
the category (LD or CF) and the number of lines of code in each benchmark. As can be seen, the
benchmarks are quite large and contain up to 50K lines of code. Further, after each join, wemeasured
the total number of variables n and report the maximum and the average. For the decomposed
analyses (ELINA and ours) we measured the size of the largest block and report again maximum
and average under nelinamax , n

our
max. To assess the quality of the partitions, we also computed (with

the needed overhead) the finest partition after each join and show the largest blocks under nfinestmax

(maximum and average). As can be observed, our partitions are strictly finer than the ones produced
by ELINA on all benchmarks due to the refinements for the assignment and join transformers.
Moreover, it can be seen that our partitions are sometimes close to the finest partition but in many
cases there is room for further improvement (an interesting item for future work).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



A Practical Construction for Decomposing Numerical Abstract Domains 55:23

Table 5. Asymptotic time complexity of the Octagon transformers with and without decomposition.

Transformer Non-Decomposed Decomposed

Conditional O(n2) O(n2max)

Assignment O(n2) O(n2max)

Meet (⊓) O(n2) O(∑
r
i≙1 n

2
i )

Join (⊔) O(n2) O(∑
r
i≙1 n

2
i )

Widening (∇) O(n2) O(∑
r
i≙1 n

2
i )

Strong Closure O(n3) O(∑
r
i≙1 n

3
i )

6.2 Octagon

The standard implementation of the Octagon domain works only with the constraint representation
and approximates the best conditional and best assignment transformers but implements best join
and meet transformers. The widening is defined syntactically. All of these transformers are in
the classes of (decomposable) transformers from Section 5. Since the syntactic widening does not
produce semantically equivalent outputs for semantically equivalent but syntactically different
inputs, our fixpoint can be different than the one computed by non-decomposed analysis. However,
we still get the same semantic invariants at fixpoint on most of our benchmarks. The standard
implementation requires a strong closure operation for the efficiency and precision of transformers
such as join, conditional, assignment, and others.

Table 5 shows the asymptotic complexity of standard Octagon transformers as well as the strong
closure operation with and without decomposition [Singh et al. 2015]. In the table, n,ni ,nmax have
the same meaning as in Table 2. In can be seen that strong closure is the most expensive operation
in this domain with cubic complexity. It is possible to apply it incrementally for the conditional
and the assignment transformers.
We compare the performance of our approach for the standard Octagon analysis, using the

non-decomposed ELINA (ELINA-ND) and the decomposed (ELINA-D) transformers from ELINA.
All of these implementations store the constraint representation using a single matrix with 64-bit
doubles. The matrix requires quadratic space in n. Thus, overall memory consumption is the same
for all implementations.

We compare the runtime and report speedups for the end-to-end Octagon analysis in Table 6. We
achieve up to 40x speedup for the end-to-end analysis over the non-decomposed implementation.
More importantly, we are either faster or have the same runtime as the decomposed version of
ELINA on all benchmarks but one. The maximum speedup over the decomposed version of ELINA
is 2.2x. The speedups on the remaining (not shown) benchmarks vary between 1x and 1.6x with
an average of about 1.2x. Notice that on the mtd_ubi benchmark, the Octagon analysis takes
longer than the Polyhedra analysis. This is because the Octagon widening takes longer to converge
compared to the Polyhedra widening.

Table 7 shows the partition statistics for the Octagon analysis (as we did for the Polyhedra analy-
sis). It can be seen that while our refinements often produce finer partitions than the decomposed
version of ELINA, they are coarser on 3 of the 13 benchmarks. This is because the decomposed
transformers in ELINA are specialized for the standard approximations of the conditional and
assignment transformers. We still achieve comparable performance on these benchmarks. Note
that the partitions are close to the finest in most cases.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



55:24 Gagandeep Singh, Markus Püschel, and Martin Vechev

Table 6. Speedup for the Octagon domain analysis with our decomposition over the non-decomposed and
the decomposed versions of ELINA.

Benchmark ELINA-ND ELINA-D Our Decomposition Speedup vs.

time(s) time(s) time(s) ELINA-ND ELINA-D

firewire_firedtv 0.4 0.07 0.07 5.7 1
net_fddi_skfp 28 2.6 1.9 15 1.4
mtd_ubi 3411 979 532 6.4 1.8
usb_core_main0 107 6.1 4.9 22 1.2
tty_synclinkmp 8.2 1 0.8 10 1.2
scsi_advansys 9.3 1.5 0.8 12 1.9
staging_vt6656 4.8 0.3 0.2 24 1.5
net_ppp 11 1.1 1.2 9.2 0.9
p10_l00 20 0.5 0.5 40 1
p16_l40 8.8 0.6 0.5 18 1.2
p12_l57 19 1.2 0.7 27 1.7
p13_l53 43 1.7 1.3 33 1.3
p19_l59 41 2.8 1.2 31 2.2

Table 7. Partition statistics for the Octagon domain analysis.

Benchmark Category LOC n nelinamax nourmax nfinestmax

max avg max avg max avg max avg

firewire_firedtv LD 14506 159 25 31 6 40 4 27 3
net_fddi_skfp LD 30186 573 86 49 18 30 10 14 7
mtd_ubi LD 39334 553 46 111 65 22 9 16 9
usb_core_main0 LD 52152 364 72 59 22 39 9 35 7
tty_synclinkmp LD 19288 324 49 84 15 26 6 25 4
scsi_advansys LD 21538 293 64 94 19 41 6 20 5
staging_vt6656 LD 25340 651 52 63 7 25 4 14 3
net_ppp LD 15744 218 54 40 23 55 29 39 19
p10_l00 CF 592 305 173 19 10 77 16 17 9
p16_l40 CF 1783 874 266 32 12 13 7 10 5
p12_l57 CF 4828 954 265 55 15 13 4 11 4
p13_l53 CF 5816 1635 337 41 12 22 7 10 5
p19_l59 CF 9794 1291 363 79 14 22 4 18 3

6.3 Zones

The standard Zones domain uses only the constraint representation. The conditional and assignment
transformers are approximate whereas the meet and join are best transformers [Miné 2002]. The
widening is defined syntactically. All of these transformers are in the class of (decomposable)
transformers from Section 5. As for Octagon, fixpoint equivalence is not guaranteed due to widening
being defined syntactically. However, we still get the same semantic invariants at fixpoint on most
of our benchmarks. As for the Octagon domain, a cubic closure operation is required. The domain
transformers have the same asymptotic complexity as in the Octagon domain.
We implemented both, a non-decomposed version of the transformers as well as a version

with our decomposition method of the standard transformers. Both implementations store the

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



A Practical Construction for Decomposing Numerical Abstract Domains 55:25

Table 8. Speedup for the Zones domain analysis with our decomposition over non-decomposed implementa-
tion.

Benchmark Non-Decomposed Our Decomposition Speedup vs.

time(s) time(s) Non-Decomposed

firewire_firedtv 0.05 0.05 1
net_fddi_skfp 3 1.5 2
mtd_ubi 1.4 0.7 2
usb_core_main0 10.3 4.6 2.2
tty_synclinkmp 1.1 0.7 1.6
scsi_advansys 0.9 0.7 1.3
staging_vt6656 0.5 0.2 2.5
net_ppp 1.1 0.7 1.5
p10_l00 1.9 0.4 4.6
p16_l40 1.7 0.7 2.5
p12_l57 3.5 0.9 3.9
p13_l53 8.7 2.1 4.2
p19_l59 9.8 1.6 6.1

Table 9. Partition statistics for the Zones domain analysis.

Benchmark Category LOC n nourmax nfinestmax

max avg max avg max avg

firewire_firedtv LD 14506 159 25 40 4 17 3
net_fddi_skfp LD 30186 578 88 30 9 13 5
mtd_ubi LD 39334 553 59 23 5 14 3
usb_core_main0 LD 52152 362 71 37 8 33 7
tty_synclinkmp LD 19288 328 49 26 6 25 5
scsi_advansys LD 21538 293 65 41 8 21 7
staging_vt6656 LD 25340 675 53 25 3 13 2
net_ppp LD 15744 219 58 54 29 47 24
p10_l00 CF 592 303 174 77 16 17 8
p16_l40 CF 1783 856 261 13 7 10 6
p12_l57 CF 4828 882 249 12 4 10 3
p13_l53 CF 5816 1557 317 22 7 20 5
p19_l59 CF 9794 1243 331 14 4 13 3

constraints using a single matrix with 64-bit doubles that requires quadratic space in n. We compare
the runtime and report speedups for the Zones analysis in Table 8. Our decomposition achieves
speedups of up to 6x over the non-decomposed implementation. The speedups over the remaining
benchmarks not shown in the table vary between 1.1x and 5x with an average of about 1.6x.

Table 9 shows the partition statistics for the Zones analysis. It can be seen that partitioning is the
core reason for the speed-ups obtained and that the partitions are close to the finest in most cases.

6.4 Summary

Overall, our results show that the generic decomposition method proposed in this paper works well.
It speeds up analysis compared to non-decomposed domains significantly, and, importantly, the

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



55:26 Gagandeep Singh, Markus Püschel, and Martin Vechev

more expensive the domain, the higher the speed-ups. Our generic method also compares favorably
with the prior manually decomposed domains provided by ELINA due to refined partitioning.
We also show that the partitions computed during analysis are close to optimal for Octagon and
Zones but with further room for improvement for Polyhedra. The challenge is how to obtain those
with reasonable cost. Further speed-ups can also be obtained by different implementations of the
transformers that are, for example, selectively approximate to achieve finer partitions.

7 RELATED WORK

We discussed dynamic partitioning specialized for standard implementations of sub-polyhedra
domains throughout the paper [Halbwachs et al. 2003; Singh et al. 2015, 2017]. We now discuss
other related work related to improving the performance of numerical domain analysis.
Variable packing [Blanchet et al. 2003; Heo et al. 2016] has been used for decomposing the

Octagon transformers. It partitions 𝒳 statically before running the analysis based on certain
criteria. For example, two variables are in the same block of the partition if they occur together in
the same program statement. Although variable packing could also be generalized to decompose
transformers of other domains, it is fundamentally different from our dynamic decomposition.
Namely, in many cases the enforced static partition would not be permissible throughout analysis
in our framework and thus it loses precision. Further, the dynamic decomposition often yields even
finer partitions than can be detected statically. So dynamic decomposition (of transformers within
the classes defined) provides both higher precision and faster execution. The work of [Venet and
Brat 2004] dynamically maintains partitions based on a syntactic criteria for the Zones domain.
The generated transformers are less precise than the ones produced by our approach. The works of
[Gange et al. 2016] and [Jourdan 2017] are focussed on designing sparse algorithms for standard
transformers of Zones and Octagon. While these algorithms cannot be extended to more expressive
domains, they could be combined with our decomposition to potentially achieve better performance.
The work of [Maréchal et al. 2017] and [Maréchal and Périn 2017] focuses on improving the

performance of standard Polyhedra transformers based on constraint representation using para-
metric linear programming. We believe their transformers could benefit from our decomposition
approach. Both [Simon and King 2005] and [Miné et al. 2010] focus on improving the performance
of the best join transformer in the Polyhedra domain based on the constraint representation. In
[Simon and King 2005] the authors exploit sparsity by noticing that a given variable occurs only a
few times in the constraint representations of the Polyhedra. If the output becomes too large, they
approximate. Frequent calls to the linear solver limit the performance of their approach. In [Miné
et al. 2010] the authors decompose the best join transformer by decomposing the inputs into two
parts each. The join transformer is then applied on one of the pieces. The partitions obtained with
this method are very coarse and thus the decomposed transformer has worse performance than
achieved using our decomposition.

8 CONCLUSION

Partitioning abstract elements is a promising avenue to make abstract domain analysis faster,
possibly by orders of magnitude, and thus practical for many real world program analysis and
verification tasks. This is made possible thanks to the inherent łlocalityž in the way program
statements, and sequences of such, access variables. This paper advances partitioning by showing
that it is generally applicable to all sub-polyhedra domains and shows how to construct decomposed
transformers from existing, non-decomposed transformers. This way, existing implementations
can be re-factored to incorporate decomposition. We also showed that our decomposition does
not lose precision on most practical transformers already in use. Finally, we provided techniques
to refine the output partitions of important transformers in certain cases, an improvement over

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.



A Practical Construction for Decomposing Numerical Abstract Domains 55:27

prior work. We evaluated our approach on three expensive abstract domains: Zones, Octagon, and
Polyhedra and showed significant speed-ups compared to prior work, including domains that were
previously manually decomposed. Most importantly, the more expensive a domain is, the higher
the speed-ups offered by domain decomposition, reaching orders of magnitude for Polyhedra. This
means that decomposition can level the playing field among domains, requiring rethinking of the
fundamental question which domain to use for which application.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their constructive feedback. This research
was supported by the Swiss National Science Foundation (SNF) grant number 163117.

REFERENCES

ELINA: ETH Library for Numerical Analysis. http://elina.ethz.ch.
R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma polyhedra library: Toward a complete set of numerical abstractions for

the analysis and verification of hardware and software systems. Sci. Comput. Program., 72(1-2):3ś21, 2008.
D. Beyer. Reliable and reproducible competition results with benchexec and witnesses (report on sv-comp 2016). In Proc.

Tools and Algorithms for the Construction and Analysis of Systems (TACAS), pages 887ś904, 2016.
B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A static analyzer for large

safety-critical software. In Proc. Programming Language Design and Implementation (PLDI), pages 196ś207, 2003.
N. Chernikova. Algorithm for discovering the set of all the solutions of a linear programming problem. USSR Computational

Mathematics and Mathematical Physics, 8(6):282 ś 293, 1968.
R. ClarisÃş and J. Cortadella. The octahedron abstract domain. Science of Computer Programming, 64:115 ś 139, 2007.
P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In Proc. International Symposium on

Programming, pages 106ś130, 1976.
P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In Proc. Principles of

Programming Languages (POPL), pages 84ś96, 1978.
R. Cousot, R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex polyhedra. Science of

Computer Programming, 58(1):28 ś 56, 2005.
P. Ferrara, F. Logozzo, and M. Fähndrich. Safer unsafe code for .net. SIGPLAN Not., 43:329ś346, 2008.
G. Gange, J. A. Navas, P. Schachte, H. Sùndergaard, and P. J. Stuckey. Exploiting sparsity in difference-bound matrices. In

Proc. Static Analysis Symposium (SAS), pages 189ś211, 2016.
R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations complete. J. ACM, 47(2):361ś416, Mar. 2000.
A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. The seahorn verification framework. In Proc. Computer Aided

Verification (CAV), pages 343ś361, 2015.
N. Halbwachs, D. Merchat, and C. Parent-Vigouroux. Cartesian factoring of polyhedra in linear relation analysis. In Proc.

Static Analysis Symposium (SAS), pages 355ś365, 2003.
N. Halbwachs, D. Merchat, and L. Gonnord. Some ways to reduce the space dimension in polyhedra computations. Formal

Methods in System Design (FMSD), 29(1):79ś95, 2006.
K. Heo, H. Oh, and H. Yang. Learning a variable-clustering strategy for octagon from labeled data generated by a static

analysis. In Proc. Static Analysis Symposium (SAS), pages 237ś256, 2016.
J. M. Howe and A. King. Logahedra: A new weakly relational domain. In Proc. Automated Technology for Verification and

Analysis (ATVA), pages 306ś320, 2009.
J.-H. Jourdan. Sparsity preserving algorithms for octagons. Electronic Notes in Theoretical Computer Science, 331:57 ś 70,

2017. Workshop on Numerical and Symbolic Abstract Domains (NSAD).
M. Karr. Affine relationships among variables of a program. Acta Informatica, 6:133ś151, 1976.
F. Logozzo and M. Fähndrich. Pentagons: A weakly relational abstract domain for the efficient validation of array accesses.

In Proc. Symposium on Applied Computing (SCP), pages 184ś188, 2008.
J. louis Imbert. Fourier’s elimination: Which to choose? Principles and Practice of Constraint Programming, pages 117ś129,

1993.
A. Maréchal and M. Périn. Efficient elimination of redundancies in polyhedra by raytracing. In Proc. Verification, Model

Checking, and Abstract Interpretation, (VMCAI), pages 367ś385, 2017.
A. Maréchal, D. Monniaux, and M. Périn. Scalable minimizing-operators on polyhedra via parametric linear programming.

In Proc. Static Analysis Symposium (SAS), pages 212ś231, 2017.
A. Miné. A few graph-based relational numerical abstract domains. In Proc. Static Analysis Symposium (SAS), pages 117ś132,

2002.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.

http://elina.ethz.ch


55:28 Gagandeep Singh, Markus Püschel, and Martin Vechev

A. Miné. The octagon abstract domain. Higher Order and Symbolic Computation, 19(1):31ś100, 2006.
A. Miné, E. RodrÃŋguez-Carbonell, and A. Simon. Speeding up polyhedral analysis by identifying common constraints.

Electronic Notes in Theoretical Computer Science, 267(1):127 ś 138, 2010.
F. Ranzato and F. Tapparo. Strong preservation as completeness in abstract interpretation. In Proc. European Symposium on

Programming (ESOP), pages 18ś32, 2004.
A. Simon and A. King. Exploiting sparsity in polyhedral analysis. In Proc. Static Analysis Symposium (SAS), pages 336ś351,

2005.
A. Simon and A. King. The two variable per inequality abstract domain. Higher Order Symbolic Computation (HOSC), 23:

87ś143, 2010.
G. Singh, M. Püschel, and M. Vechev. Making numerical program analysis fast. In Proc. Programming Language Design and

Implementation (PLDI), pages 303ś313, 2015.
G. Singh, M. Püschel, and M. Vechev. Fast polyhedra abstract domain. In Proc. Principles of Programming Languages (POPL),

pages 46ś59, 2017.
A. Venet and G. Brat. Precise and efficient static array bound checking for large embedded C programs. In Proc. Programming

Language Design and Implementation (PLDI), pages 231ś242, 2004.
H. L. Verge. A note on Chernikova’s algorithm. Technical report, 1994.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 55. Publication date: January 2018.


	Abstract
	1 Introduction
	2 Generic Model for Numerical Abstract Domains
	3 Decomposing Abstract Elements
	4 Recipe for Decomposing Transformers
	5 Decomposing Domain Transformers
	5.1 Conditional
	5.2 Assignment
	5.3 Meet (normalnormal)
	5.4 Join ()
	5.5 Widening ()

	6 Experimental Evaluation
	6.1 Polyhedra
	6.2 Octagon
	6.3 Zones
	6.4 Summary

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

